Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(5): 2917-2924, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36705675

RESUMEN

Almost all current electrochemiluminescent reagents require real-time electrochemical stimulation to emit light. Here, we report a novel electrochemiluminescent reagent, nitrogen-deficient graphitic carbon nitride (CNx), that can emit afterglow electrochemiluminescence (ECL) after cessation of electric excitation. CNx obtained by post-thermal treatment of graphitic carbon nitride (CN) with KSCN has a cyanamide group and a nitrogen vacancy, which created defects to trap electrically injected electrons. The trapped electrons can slowly release and react with coreactants to emit light with longevity. The cathodic afterglow ECL lasts for 70 s after pulsing the CNx nanosheet (CNxNS-1.6)-modified glassy carbon electrode at -1.0 V for 20 s in 2.0 M PBS containing 1 mM K2S2O8. The afterglow ECL mechanism is revealed by investigation of its influencing factors and ECL wavelength. The discovery of afterglow ECL may open a new doorway for new significant applications of the ECL technique and provide a deeper understanding of the structure-property relationships of CN.

2.
Org Biomol Chem ; 20(29): 5779-5783, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35815996

RESUMEN

A visible-light induced dearomative cascade cyclization of biaryl ynones with diselenides under photocatalyst and external additive-free conditions has been explored, giving a series of selenated spiro[5.5]trienones in moderate to good yields. The Se-Se bond in diselenides could be cleaved to generate arylselenyl radicals under visible light irradiation in the absence of a photocatalyst. This protocol provides a facile and green method for the synthesis of spiro[5.5]trienones.


Asunto(s)
Compuestos de Espiro , Ciclización , Luz , Compuestos de Espiro/química
3.
Molecules ; 27(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36235269

RESUMEN

Antibiotics have become a new type of environmental pollutant due to their extensive use. High-performance adsorbents are of paramount significance for a cost-effective and environmentally friendly strategy to remove antibiotics from water environments. Herein, we report a novel annular mesoporous carbon (MCN), prepared by phenolic resin and triblock copolymer F127, as a high-performance adsorbent to remove penicillin, streptomycin, and tetracycline hydrochloride from wastewater. The MCNs have high purity, rich annular mesoporosity, a high surface area (605.53 m2/g), and large pore volume (0.58 cm3/g), improving the adsorption capacity and facilitating the efficient removal of penicillin, streptomycin, and tetracycline hydrochloride from water. In the application of MCNs to treat these three kinds of residual antibiotics, the adsorption amounts of tetracycline hydrochloride were higher than penicillin and streptomycin, and the adsorption capacity was up to 880.6 mg/g. Moreover, high removal efficiency (99.6%) and excellent recyclability were achieved. The results demonstrate that MCN adsorbents have significant potential in the treatment of water contaminated with antibiotics.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Carbono , Formaldehído , Penicilinas , Fenoles , Polímeros , Estreptomicina , Tetraciclina , Agua
4.
Small ; 16(40): e2003597, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32930498

RESUMEN

Metal-organic frameworks (MOFs) have attracted enormous research interest as precursors/templates to prepare catalytic materials. However, the effect of structural isomerism of MOFs on the catalytic performance has rarely been studied. In this contribution, two topologically different Ce-benzene tricarboxylate (Ce-BTC) based on the same ligands and metal centers (viz., "MOF isomers") are prepared and used as porous supports to load Pt nanoparticles (NPs), which shows distinct differences in porosities and loading behaviors of Pt. Strikingly, an irreversible framework transformation from tetragonal Ce-BTC to monoclinic isomer is observed during water soaking treatment. The results give clear evidence that Pt/CeO2 derived from tetragonal Ce-BTC inclines to produce more Pt0 and smaller Pt NPs, which eventually improve the catalytic performance for CO oxidation (T100 = 80 °C). In situ diffuse reflectance infrared Fourier transform spectroscopy analyses demonstrate that the adsorbed CO-Pt0 is the dominant intermediate for CO oxidation, rather than CO-Ptσ + at the low temperature. Furthermore, MOF isomers based on the same structural units are also found in other Ln-MOFs, such as Er-BTC, Eu-BTC, Y-BTC, and Ce/Y-BTC. Overall, this study affords a fundamental understanding of the effect of MOF structural isomers on the catalytic performance of the derived composites.

5.
BMC Cancer ; 20(1): 634, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641008

RESUMEN

BACKGROUND: Drug resistance is a major cause of therapeutic failure that is often associated with elevated autophagy and apurinic/apyrimidinic endonuclease 1 (APE1) expression. Herein, we investigated the role of APE1 and autophagy in A549 cells treated with cisplatin. METHODS: SILAC proteomics was applied to obtain a panoramic view of cisplatin treatment in KRASG12S-mutant A549 cells. Quantity analysis of cellular apoptosis and autophagy was based on flow cytometry. Western blotting was used to examine the expression levels of apoptosis- and autophagy-related proteins, as well as those of APE1. Knockdown of APE1 was achieved by RNA interference. Immunoprecipitation was further employed to reveal the molecular interaction of APE1, p53, and LC3 when A549 cells were exposed to cisplatin. RESULTS: SILAC proteomics revealed that 72 canonical pathways, including base excision repair (BER) and autophagy signalling pathways, were regulated after cisplatin treatment in A549 cells. Cisplatin markedly induced autophagy and apoptosis in A549 cells, accompanied by remarkable APE1 increase. Suppression of autophagy enhanced the inhibition effect of cisplatin on cell growth, proliferation, and colony formation; however, APE1 inhibition enhanced the expression of LC3-I/II, suggesting that APE1 and autophagy are compensatory for cell survival to evade the anticancer action of cisplatin. Immunoprecipitation results revealed the triple complex of APE1-p53-LC3 in response to cisplatin plus CQ in A549 cells. Dual inhibition of APE1 and autophagy significantly enhanced cisplatin-induced apoptosis, which eventually overcame drug resistance in cisplatin-resistant A549 cells. CONCLUSIONS: Dual inhibition of APE1 and autophagy greatly enhances apoptosis in parental KRASG12S-mutant A549 cells and cisplatin-resistant A549 cells via regulation of APE1-p53-LC3 complex assembly, providing therapeutic vulnerability to overcome cisplatin resistance in the context of KRASG12S-mutant lung cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cloroquina/farmacología , Cloroquina/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
6.
Langmuir ; 36(47): 14306-14317, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206528

RESUMEN

Crystal size and morphology of zeolitic imidazolate frameworks (ZIFs) can be generally controlled based on the classical theory of nucleation and growth. Herein, we have developed an alternative method to adjust the nucleation and growth kinetics of microporous ZIF-8 nanocrystals mediated by continuous CO2 gas bubbling. In particular, CO2 bubbling led to the dissolution of ZIF-8 slurry, while the evacuation of CO2 bubbling resulted in the formation of new ZIF-8 nanoparticles with a considerably smaller size. A plausible mechanism of the CO2-mediated synthesis of ZIF-8 nanoparticles was proposed based on comprehensive characterizations and analyses, which indicated that the dissolved CO2 in methanol was able to perturb the pre-equilibrium states of crystallization intermediates and led to a comparatively fast nucleation rate due to a low number of overcoordinated species between the metal ion and the ligand. Both methanol and the base were critically important to the dissolution-recrystallization of ZIF-8, wherein the methyl carbonate linker might be reversibly produced by CO2 insertion into the methoxide group (Zn-OCH3). Also, the CO2-mediated synthesis led to the small particle size, high crystallinity, good thermal stability, and high purity of ZIF-8, as compared to the conventional ZIF-8 prepared without CO2 gas bubbling. As proof of workability, the prepared monodispersed ZIF-8 nanoparticles showed a much higher photocatalytic activity toward various organic dyes' decomposition than the conventional ZIF-8. Also, the CO2 bubbling-mediated method could be further extended to prepare other ZIFs (e.g., ZIF-67).

7.
Analyst ; 144(14): 4188-4193, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31184646

RESUMEN

In this study, catalase-linked immunosorbent pressure assay with a gas-generation reaction was established for quantitative detection of disease biomarker C-reactive protein (CRP) by a portable pressuremeter. The pressure-based detection system recognizes, transduces, and amplifies the target signal to a convenient target-correlated pressure signal reading in a closed chamber. Biotin molecules were modified on the surface of catalase in order to incorporate catalase into the pressure immunoassay by the streptavidin-biotin interaction. To improve the assay performance, the modification ratios of biotin molecules to catalase, and the concentrations of capture and detection antibodies were further optimized. The catalase-linked immunosorbent pressure assay allows portable and quantitation analysis of CRP with a limit of detection of 1.8 nM, which can satisfy the clinical needs for determining the risk of cardiovascular disease. The catalase-linked immunosorbent pressure assay also shows superior specificity and good accuracy. Compared to the previously reported assay catalyzed by PtNP nanozyme, catalase is not easily deactivated during storage and operation. With the merits of enzymatic efficiency, biocompatibility, low non-specific adsorption and facile modification, catalase can be reasonably used for reproducible, stable, simple quantitative detection of disease markers using a portable pressure-based assay in resource-limited settings.


Asunto(s)
Proteína C-Reactiva/análisis , Catalasa/química , Biotina/química , Catálisis , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Límite de Detección , Nanopartículas del Metal/química , Oxígeno/química , Platino (Metal)/química , Presión , Sensibilidad y Especificidad
8.
Proc Natl Acad Sci U S A ; 113(13): E1898-906, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26984496

RESUMEN

The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein-protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent ß-catenin signaling and cAMP-PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism.


Asunto(s)
Diabetes Insípida/tratamiento farmacológico , Receptores Nucleares Huérfanos/metabolismo , Receptores de Superficie Celular/metabolismo , Orina/química , beta Catenina/metabolismo , Animales , Acuaporina 2/metabolismo , Diabetes Insípida/orina , Hidrocarburos Fluorados/farmacología , Receptores X del Hígado , Masculino , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos/agonistas , Ósmosis , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Solubilidad , Sulfonamidas/farmacología , Orina/fisiología , Vía de Señalización Wnt , Receptor de Prorenina
9.
Sensors (Basel) ; 19(10)2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091745

RESUMEN

In this work, we have developed a simple and rapid colorimetric assay for the detection of immunoglobulin E (IgE) using functional nucleic acids (FNAs) and a solid-phase competition enzyme-linked immunosorbent assay (ELISA). The FNAs including aptamer of recombinant IgE, G-quadruplex and its complementary fragments were immobilized on 96-well microplates to achieve recognition and detection of IgE in biological samples. The G-quadruplex DNAzyme catalyzed 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS)-hemin-H2O2 system was used to improve the sensitivity of colorimetric assay. In the presence of IgE, the hairpin structure and G-quadruplex would be destroyed, resulting in the inactivation of DNAzyme and subsequent reduction of its absorbance. This cost-effective approach detected IgE in the linear range from 5.0 pg/mL to 500 ng/mL, with the limit of detection (LOD) of 2.0 pg/mL, under optimal conditions. Moreover, the developed method was successfully applied to the rapid detection of IgE in human urine, indicating a great potentiality of this approach in clinical diagnosis and other biomedical applications.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Inmunoglobulina E/aislamiento & purificación , Benzotiazoles/química , ADN Catalítico/química , G-Cuádruplex , Humanos , Peróxido de Hidrógeno/química , Inmunoglobulina E/química , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Ácidos Sulfónicos/química
10.
Molecules ; 24(11)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159343

RESUMEN

In this work, with the drug oxytetracycline (OTC) released, cell cytotoxicity and antimicrobial studies of dual-responsive sodium alginate and N-Isopropylacrylamide hydrogels (SA/pNIPAAm) with enclosed OTC were investigated. The molecular OTC release was explored with different acid-base conditions and temperature conditions. In order to characterize cell cytotoxicity and antimicrobial efficacy, time-dependent OTC release analysis of different acid-base conditions was performed in SA/pNIPAAm hydrogels. OTC@SA/pNIPAAm hydrogels showed excellent time-dependent antimicrobial efficacy, in which the IC50 values were 50.11 µg mL-1, 34.27 µg mL-1, and 22.39 µg mL-1 among three consecutive days, respectively. Meanwhile, the human cells showed excellent viability at the IC50 dosage of OTC@SA/pNIPAAm (50.11 µg mL-1). OTC@SA/pNIPAAm performed in this study indicated that SA/pNIPAAm may serve as drug carriers for sustainable release at a specific concentration and for being employed as substrates for decreasing drug toxicity. Besides, pH-responsive and thermos-responsive SA/pNIPAAm may lead to the better selectivity of drug release in the ideal location or site. Finally, the results demonstrate that the designed, dual-responsive, biocompatible OTC@SA/pNIPAAm hydrogels showed excellent antimicrobial efficacy and may potentially be found to have enormous applicability in the field of pharmaceutics.


Asunto(s)
Alginatos/química , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Hidrogeles/química , Preparaciones Farmacéuticas/administración & dosificación , Antiinfecciosos/administración & dosificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Preparaciones Farmacéuticas/química , Análisis Espectral
11.
Am J Physiol Renal Physiol ; 312(2): F245-F253, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122543

RESUMEN

The (pro)renin receptor (PRR) is abundantly expressed in the collecting duct (CD) and the expression is further induced by angiotensin II (ANG II). The present study was conducted to investigate the role of CD PRR during ANG II-induced hypertension and to further explore the underlying mechanism. Radiotelemetry demonstrated that a 1-wk ANG II infusion gradually and significantly induced hypertensive response in floxed mice and this response was significantly attenuated in mice lacking PRR in the CD (termed CD PRR KO). ANG II infusion in floxed mice increased urinary renin activity and selectively induced renal medullary α-epithelial sodium channel (α-ENaC) mRNA and protein expression, all of which were blunted in the null mice. In cultured mpkCCD cells grown in Transwells, transepithelial Na+ transport as measured by using a volt-ohmmeter was transiently stimulated by acute ANG II treatment, which was abolished by a PRR antagonist, PRO20. In a chronic setting, ANG II treatment induced α-ENaC mRNA expression in mpkCCD cells, which was similarly blocked by PRO20. Chronic intramedullary infusion of an ENaC inhibitor amiloride in rats significantly attenuated ANG II-induced hypertension. Overall, the present study suggests that CD PRR contributes to ANG II-induced hypertension at least partially via activation of renal medullary ENaC.


Asunto(s)
Presión Sanguínea/fisiología , Canales Epiteliales de Sodio/metabolismo , Hipertensión/metabolismo , Túbulos Renales Colectores/metabolismo , Receptores de Superficie Celular/metabolismo , Angiotensina II , Animales , Células Cultivadas , Hipertensión/inducido químicamente , Túbulos Renales Colectores/efectos de los fármacos , Ratones , Ratones Noqueados , Fragmentos de Péptidos/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Renina/farmacología , Receptor de Prorenina
12.
Lipids Health Dis ; 16(1): 8, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086886

RESUMEN

BACKGROUND: It has been demonstrated that acute oral administration of schisandrin B (Sch B), an active dibenzocyclooctadiene isolated from Schisandrae Fructus (a commonly used traditional Chinese herb), increased serum and hepatic triglyceride (TG) levels and hepatic mass in mice. The present study aimed to investigate the biochemical mechanism underlying the Sch B-induced hypertriglyceridemia, hepatic steatosis and hepatomegaly. METHODS: Male ICR mice were given a single oral dose of Sch B (0.25-2 g/kg). Sch B-induced changes in serum levels of biomarkers, such as TG, total cholesterol (TC), apolipoprotein B48 (ApoB 48), very-low-density lipoprotein (VLDL), non-esterified fatty acid (NEFA) and hepatic growth factor (HGF), as well as hepatic lipids and mass, epididymal adipose tissue (EAT) and adipocyte size, and histological changes of the liver and EAT were examined over a period of 12-120 h after Sch B treatment. RESULTS: Serum and hepatic TG levels were increased by 1.0-4.3 fold and 40-158% at 12-72 h and 12-96 h, respectively, after Sch B administration. Sch B treatment elevated serum ApoB 48 level (up to 12%), a marker of exogenous TG, but not VLDL, as compared with the vehicle treatment. Treatment with Sch B caused a time-/dose-dependent reduction in EAT index (up to 39%) and adipocyte size (up to 67%) and elevation in serum NEFA level (up to 55%). Sch B treatment induced hepatic steatosis in a time-/dose-dependent manner, as indicated by increases in total vacuole area (up to 3.2 fold vs. the vehicle control) and lipid positive staining area (up to 17.5 × 103 µm2) in liver tissue. Hepatic index and serum HGF levels were increased by 18-60% and 42-71% at 12-120 h and 24-72 h post-Sch B dosing, respectively. In addition, ultrastructural changes, such as increase in size and disruption of cristae, in hepatic mitochondria were observed in Sch B-treated mice. CONCLUSION: Our findings suggest that exogenous sources of TG and the breakdown of fat storage in the body contribute to Sch B-induced hypertriglyceridemia and hepatic steatosis in mice. Hepatomegaly (a probable hepatotoxic action) caused by Sch B may result from the fat accumulation and mitochondrial damage in liver tissue.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Hígado Graso/metabolismo , Hepatomegalia/metabolismo , Hipertrigliceridemia/metabolismo , Lignanos/efectos adversos , Hígado/efectos de los fármacos , Compuestos Policíclicos/efectos adversos , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Apolipoproteína B-48/sangre , Tamaño de la Célula , Colesterol/sangre , VLDL-Colesterol/sangre , Ciclooctanos/efectos adversos , Ácidos Grasos no Esterificados/sangre , Hígado Graso/inducido químicamente , Hígado Graso/patología , Factor de Crecimiento de Hepatocito/sangre , Hepatomegalia/inducido químicamente , Hepatomegalia/patología , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Mitocondrias/patología , Schisandra/química , Triglicéridos/sangre
13.
J Am Soc Nephrol ; 27(10): 3022-3034, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27000064

RESUMEN

Within the kidney, the (pro)renin receptor (PRR) is predominantly expressed in the collecting duct (CD), particularly in intercalated cells, and it is regulated by the PGE2 receptor EP4 Notably, EP4 also controls urinary concentration through regulation of aquaporin 2 (AQP2). Here, we tested the hypothesis that sequential activation of EP4 and PRR determines AQP2 expression in the CD, thus mediating the antidiuretic action of vasopressin (AVP). Water deprivation (WD) elevated renal PRR expression and urinary soluble PRR excretion in rats. Intrarenal infusion of a PRR decoy peptide, PRO20, or an EP4 antagonist partially prevented the decrease in urine volume and the increase in urine osmolality and AQP2 expression induced by 48-hour WD. In primary cultures of rat inner medullary CD cells, AQP2 expression induced by AVP treatment for 24 hours depended on sequential activation of the EP4 receptor and PRR. Additionally, mice lacking PRR in the CD exhibited increased urine volume and decreased urine osmolality under basal conditions and impaired urine concentrating capability accompanied by severe volume loss and a dangerous level of plasma hyperosmolality after WD. Together, these results suggest a previously undescribed linear AVP/PGE2/EP4/PRR pathway in the CD for regulation of AQP2 expression and urine concentrating capability.


Asunto(s)
Diuresis/fisiología , Receptores de Superficie Celular/fisiología , Subtipo EP4 de Receptores de Prostaglandina E/fisiología , Vasopresinas/fisiología , Animales , Túbulos Renales Colectores , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Receptor de Prorenina
15.
Clin Exp Pharmacol Physiol ; 43(6): 585-601, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26999067

RESUMEN

Human Aurora kinases, including Aurora kinase A (AURKA), B (AURKB), and C (AURKC), play an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. AURKA and AURKB are key regulators of mitosis and centrosome via polymerizing microfilaments and controlling chromatid segregation. In particular, AURKA plays critical roles in the regulation of mitotic entry, centrosome function, bipolar spindle assembly, and chromosome segregation. AURKA has been found to be overexpressed in various solid and haematological cancers and has been linked with poor prognosis. Its important role in cancer initiation, growth, and metastasis has brought the focus to search for potent and selective AURKA inhibitors for cancer treatment. MLN8237, also known as alisertib, is one selective AURKA inhibitor that has shown remarkable anticancer effects in preclinical studies. Alisertib exhibits favourable pharmacokinetic properties. Alisertib has generally showed good partial response rates of 4-52% and good safety profiles in Phase I and II trials when it is solely administered as well as combined with cytotoxic chemotherapeutic drugs. Recently, the multicentre, randomized Phase III study of alisertib in patients with relapsed or refractory peripheral T-cell lymphoma has been discontinued due to unsatisfactory efficacy. The low risk of side effects, accessibility, and effectiveness of alisertib makes it a new promising anticancer therapy and further mechanistic and clinical studies are warranted.


Asunto(s)
Antineoplásicos/farmacocinética , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Animales , Antineoplásicos/uso terapéutico , Aurora Quinasa A/química , Sitios de Unión/fisiología , Ensayos Clínicos como Asunto/métodos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Secundaria de Proteína
16.
Clin Exp Pharmacol Physiol ; 43(8): 723-37, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27097837

RESUMEN

Chemotherapy is one of the prevailing methods used to treat malignant tumours, but the outcome and prognosis of tumour patients are not optimistic. Cancer cells gradually generate resistance to almost all chemotherapeutic drugs via a variety of distinct mechanisms and pathways. Chemotherapeutic resistance, either intrinsic or acquired, is caused and sustained by reduced drug accumulation and increased drug export, alterations in drug targets and signalling transduction molecules, increased repair of drug-induced DNA damage, and evasion of apoptosis. In order to better understand the mechanisms of chemoresistance, this review highlights our current knowledge of the role of altered drug metabolism and transport and deregulation of apoptosis and autophagy in the development of tumour chemoresistance. Reduced intracellular activation of prodrugs (e.g. thiotepa and tegafur) or enhanced drug inactivation by Phase I and II enzymes contributes to the development of chemoresistance. Both primary and acquired resistance can be caused by alterations in the transport of anticancer drugs which is mediated by a variety of drug transporters such as P-glycoprotein (P-gp), multidrug resistance associated proteins, and breast cancer resistance protein. Presently there is a line of evidence indicating that deregulation of programmed cell death including apoptosis and autophagy is also an important mechanism for tumour resistance to anticancer drugs. Reversal of chemoresistance is likely via pharmacological and biological approaches. Further studies are warranted to grasp the full picture of how each type of cancer cells develop resistance to anticancer drugs and to identify novel strategies to overcome it.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Resistencia a Antineoplásicos/fisiología , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neoplasias/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
Int J Mol Sci ; 17(7)2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27367670

RESUMEN

The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA ("Orthologous MAtrix") Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery.


Asunto(s)
Biología Computacional/métodos , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Descubrimiento de Drogas , Humanos , Relación Estructura-Actividad
18.
Molecules ; 21(2): 148, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26840285

RESUMEN

Vancomycin, a widely used antibiotic, often induces nephrotoxicity, however, the molecular targets and underlying mechanisms of this side effect remain unclear. The present study aimed to examine molecular interactome and analyze the signaling pathways related to the vancomycin-induced nephrotoxicity in human proximal tubule epithelial HK-2 cells using the stable isotope labeling by amino acids in cell culture (SILAC) approach. The quantitative proteomic study revealed that there were at least 492 proteins interacting with vancomycin and there were 290 signaling pathways and cellular functions potentially regulated by vancomycin in HK-2 cells. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, EMT, and ROS generation. These findings suggest that vancomycin-induced proteomic responses in HK-2 cells involvefunctional proteins and pathways that regulate cell cycle, apoptosis, autophagy, and redox homeostasis. This is the first systemic study revealed the networks of signaling pathways and proteomic responses to vancomycin treatment in HK-2 cells, and the data may be used to discriminate the molecular and clinical subtypes and to identify new targets and biomarkers for vancomycin-induced nephrotoxic effect. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for drug-induced renal toxicity.


Asunto(s)
Células Epiteliales/metabolismo , Marcaje Isotópico/métodos , Túbulos Renales Proximales/citología , Proteoma/efectos de los fármacos , Vancomicina/toxicidad , Aminoácidos/química , Técnicas de Cultivo de Célula , Línea Celular , Células Epiteliales/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Biochem Biophys Res Commun ; 457(3): 249-55, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25576362

RESUMEN

Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure-activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Animales , Bases de Datos Genéticas , Evaluación de Medicamentos , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica/estadística & datos numéricos , Genómica , Corazón/efectos de los fármacos , Humanos , Infecciones/etiología , Modelos Genéticos , Farmacogenética , Relación Estructura-Actividad Cuantitativa , Riesgo
20.
Drug Metab Rev ; 47(4): 470-519, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26574146

RESUMEN

With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.


Asunto(s)
Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Regulación Enzimológica de la Expresión Génica , Medicina de Precisión/métodos , Procesamiento Proteico-Postraduccional , Enfermedad de Alzheimer/enzimología , Animales , Artritis Reumatoide/enzimología , Citocromo P-450 CYP2D6/biosíntesis , Diabetes Mellitus/enzimología , Epigenómica , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Inflamación/enzimología , Fallo Renal Crónico/enzimología , Cirrosis Hepática Alcohólica/enzimología , Hepatopatías/enzimología , Enfermedad de Parkinson/enzimología , Preparaciones de Plantas/farmacología , Polimorfismo Genético , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA