Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Chem Soc Rev ; 47(11): 4198-4232, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29667656

RESUMEN

Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.


Asunto(s)
Técnicas Biosensibles , Carbono/química , Sistemas de Liberación de Medicamentos , Imagen Molecular , Nanoestructuras/química , Investigación Biomédica , Portadores de Fármacos/química , Geles/química
2.
Molecules ; 23(1)2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29346317

RESUMEN

Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (µM): 32:8:100 (termed 32 µM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.


Asunto(s)
Catequina/análogos & derivados , Curcumina/administración & dosificación , Combinación de Medicamentos , Liposomas , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Estilbenos/administración & dosificación , Animales , Biomarcadores de Tumor , Catequina/administración & dosificación , Catequina/química , Catequina/farmacocinética , Línea Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inmunofenotipificación , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microglía/inmunología , Microglía/metabolismo , Resveratrol , Estilbenos/química , Estilbenos/farmacocinética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
RSC Adv ; 14(12): 8409-8433, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38476178

RESUMEN

Yolk-shell microgels and their hybrids have attained great importance in modern-day research owing to their captivating features and potential uses. This manuscript provides the strategies for preparation, classification, properties and current applications of yolk-shell microgels and their hybrids. Some of the yolk-shell microgels and their hybrids are identified as smart polymer yolk-shell microgels and smart hybrid microgels, respectively, as they react to changes in particular environmental stimuli such as pH, temperature and ionic strength of the medium. This unique behavior makes them a perfect candidate for utilization in drug delivery, selective catalysis, adsorption of metal ions, nanoreactors and many other fields. This review demonstrates the contemporary progress along with suggestions and future perspectives for further research in this specific field.

4.
Int J Biol Macromol ; 260(Pt 1): 129409, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224801

RESUMEN

Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.


Asunto(s)
Quitosano , Microgeles , Microgeles/química , Quitosano/química , Geles/química , Catálisis , Nanotecnología
5.
Gels ; 9(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37754443

RESUMEN

Curcumin, a nontoxic and cheap natural medicine, has high therapeutic efficacy for many diseases, including diabetes and cancers. Unfortunately, its exceedingly low water-solubility and rapid degradation in the body severely limit its bioavailability. In this work, we prepare a series of biocompatible poly(vinyl anisole)@nonlinear poly(ethylene glycol) (PVAS@PEG) core-shell nanogels with different PEG gel shell thickness to provide high water solubility, good stability, and controllable sustained release of curcumin. The PVAS nanogel core is designed to attract and store curcumin molecules for high drug loading capacity and the hydrophilic nonlinear PEG gel shell is designed to offer water dispersibility and thermo-responsive drug release. The nanogels prepared are monodispersed in a spherical shape with clear core-shell morphology. The size and shell thickness of the nanogels can be easily controlled by changing the core-shell precursor feeding ratios. The optimized PVAS@PEG nanogels display a high curcumin loading capacity of 38.0 wt%. The nanogels can stabilize curcumin from degradation at pH = 7.4 and release it in response to heat within the physiological temperature range. The nanogels can enter cells effectively and exhibit negligible cytotoxicity to both the B16F10 and HL-7702 cells at a concentration up to 2.3 mg/mL. Such designed PVAS@PEG nanogels have great potential to be used for efficient drug delivery.

6.
Int J Biol Macromol ; 240: 124401, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37044327

RESUMEN

Chitosan based monodisperse poly[chitosan-N-isopropylmethacrylamide-acrylic acid] [P(CNA)] microgels were produced via precipitation polymerization. Resulting crosslinked P(CNA) micro particles were used as micro-reactors to prepare silver nanoparticles within the polymeric network by chemical reduction of Ag+ ions with sodium borohydride. Various techniques including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-vis) spectroscopy were used to analyze P(CNA) microgels and Ag-P(CNA) hybrid microgels. Catalytic potential of Ag-P(CNA) hybrid system towards individual and simultaneous reduction of various nitroarenes like p-nitrophenol (pNP), o-nitrophenol (oNP), p-nitroaniline (pNA) and o-nitroaniline (oNA) into corresponding aminoarenes using sodium borohydride as a reductant in aqueous medium was evaluated. The catalytic activity of Ag-P(CNA) system towards both the individual and simultaneous reduction of nitroarenes was examined at various concentrations of catalyst. The values of pseudo first order rate constant (k1) for reduction of individual nitroarene and multiple nitroarenes were determined for comparison. The Ag-P(CNA) hybrid microgel system was found to be stable, economical and efficient catalyst for rapid individual and simultaneous reduction of nitroarenes.


Asunto(s)
Quitosano , Nanopartículas del Metal , Microgeles , Nanopartículas del Metal/química , Quitosano/química , Plata/química , Catálisis
7.
Comput Intell Neurosci ; 2022: 9231305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072743

RESUMEN

In the field of mechanical and electrical equipment, the motor rolling bearing is a workpiece that is extremely prone to damage and failure. However, the traditional fault diagnosis methods cannot keep up with the development pace of the times because they need complex manual pretreatment or the support of specific expert experience and knowledge. As a rising star, the data-driven fault diagnosis methods are increasingly favored by scholars and experts at home and abroad. The convolutional neural network has been widely used because of its powerful feature extraction ability for all kinds of complex information and its outstanding research results in image processing, target tracking, target diagnosis, time-frequency analysis, and other scenes. Therefore, this paper introduces a convolutional neural network and applies it to motor-bearing fault diagnosis. Aiming at the shortcomings of fault signal and convolutional neural network, a large-scale maximum pooling strategy is proposed and optimized by wavelet transform to improve the fault diagnosis efficiency of motor bearing under high-voltage operation. Compared with other machine learning algorithms, the convolution neural network fault diagnosis model constructed in this paper not only has high accuracy (up to 0.9871) and low error (only 0.032) but also is simple to use. It provides a new way for motor bearing fault diagnosis and has very important economic and social value.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Aprendizaje Automático , Análisis de Ondículas
8.
J Phys Chem Lett ; 12(48): 11751-11760, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34854687

RESUMEN

Tumor microenvironment-responsive chemodynamic therapy (CDT), an approach based on Fenton/Fenton-like reaction to convert hydrogen peroxide (H2O2) into the highly cytotoxic hydroxyl radical (·OH) in situ to kill cancer cells, represents an important direction for cancer therapy. Different types of nanozymes (nanomaterial-based catalysts that can mimic the activities of natural enzymes) have been developed to mimic peroxidase. This Perspective highlights the latest research progress regarding low-cost and biocompatible carbon-based nanozymes for peroxidase mimics. The effects of structure and surface properties of carbon-based nanozymes on their electronic transfer and peroxidase-like activity are analyzed, including nanospheres, nanotubes, nanosheets, and graphene quantum dots (GQDs) with or without surface functionalization and heteroatom doping. We expand our newly developed carbon nitride (g-C3N4) QD systems to nanozyme application, which are highly efficient in converting the intracellular H2O2 to ·OH species to kill 4T1 cancer cells and demonstrate a great potential for CDT.


Asunto(s)
Carbono/química , Nanoestructuras/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Radical Hidroxilo/farmacología , Metales/química , Ratones , Nitrilos/química , Peroxidasa/química , Peroxidasa/metabolismo , Puntos Cuánticos/química , Propiedades de Superficie
9.
Anal Chem ; 81(2): 689-98, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19072589

RESUMEN

The ability to regulate how molecular chirality of enantiomeric amino acids operates in biological systems constitutes the basis of drug design for specific targeting. We report herein a nanoparticle-based strategy to regulate interparticle chiral recognition of enantiomers using enantiomeric cysteines (l and d) and gold nanoparticles as a model system. A key element of this strategy is the creation of a nanoscale environment either favoring or not favoring the preferential configuration of the pairwise zwitterionic dimerization of the enantiomeric cysteines adsorbed on gold nanoparticles as a footprint for interparticle chiral recognition. This recognition leads to interparticle assembly of the nanoparticles which is determined by the change in the nanoparticle surface plasmonic resonance. While the surface density and functionality of cysteines on gold nanoparticles are independent of chirality, the interparticle chiral recognition is evidenced by the sharp contrast between the interparticle homochiral and heterochiral assembly rates based on a first-order kinetic model. The structural properties for the homochiral and heterochiral assemblies of nanoparticles depend on the particle size, the cysteine chirality, and other interparticle binding conditions. The structural and thermodynamic differences between the homochiral and heterochiral interactions for the interparticle assemblies of nanoparticles were not only substantiated by spectroscopic characterizations of the adsorbed cysteine species but also supported by structures and enthalpies obtained from preliminary density functional theory calculations. The experimental-theoretical correlation between the interparticle reactivity and the enantiomeric ratio reveals that the chiral recognition is tunable by the nanoscale environment, which is a key feature of the nanoparticle-regulation strategy for the interparticle chiral recognition.


Asunto(s)
Cisteína/química , Oro/química , Nanopartículas del Metal/química , Cisteína/análisis , Cinética , Modelos Químicos , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Estereoisomerismo
10.
J Colloid Interface Sci ; 544: 312-320, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30861436

RESUMEN

Subambient temperatures are employed in Pluronic-block-copolymer-templated syntheses of many large-pore silicas: SBA-15 (2-D hexagonal with cylindrical mesopores), FDU-12 (face-centered cubic with spherical mesopores), nanotubes and hollow nanospheres. Herein, the origin of a significant temperature dependence of the unit-cell parameter and pore diameter of silicas templated by swollen micelles of Pluronics under subambient conditions was elucidated. The temperature dependence of size of swollen spherical micelles of Pluronic F127 (EO106PO70EO106) in 2 M HCl solution was studied in 12-25 °C range using dynamic light scattering and was correlated with structure types, unit-cell sizes and pore sizes of silicas synthesized at four silica-precursor/Pluronic ratios with a swelling agent (toluene, ethylbenzene). The increase in size of swollen micelles with temperature decrease was paralleled by the increase in the unit-cell size and pore diameter, even if the micelle shape changed in the process of formation of the micelle-templated silica. The decrease in the silica-precursor/Pluronic F127 ratio at constant temperature triggered a succession of phases, including SBA-15 - nanotube sequence that may involve an intermediate nanotube bundle structure, which is uncommon and potentially useful. The temperature decrease also led to a succession of phases, including FDU-12 - SBA-15, hollow nanospheres - nanotube bundles, and nanotubes - SBA-15 sequences.

11.
Biomacromolecules ; 8(12): 3842-7, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18020392

RESUMEN

To study the permeability of hydrogel in nanoscale thickness, core-shell microgels with degradable poly( N-isopropylacrylamide) (PNIPAM) as the core and nondegradable phenylboronic acid (PBA)-conjugated poly( N-isopropylacrylamide) [P(NIPAM-PBA)] as the shell were designed and synthesized. Laser light scattering was used to study the volume phase transitions and core degradation behavior of the core-shell microgels. The release of the degraded core polymer chains can be conveniently followed by turbidity change. At room temperature, the degraded polymer segments diffuse freely out of the precursor poly( N-isopropylacrylamide-co-acrylic acid) gel shells in water. In contrast, the PBA-modified P(NIPAM-PBA) nanoshell can hold most of the degraded core polymer chains under the same conditions, thanks to its condensed structure at the collapsed state. Lowering the temperature or increasing pH increases the swelling degree of the P(NIPAM-PBA) shell, which provides methods to control its permeability by temperature and pH. The complexation of PBA groups with glucose also enhances the swelling of the nanoshell and, thus, increases its permeability. The understanding of how to control the permeability of the glucose-sensitive gel nanoshell in hollow microgel particles is very important for further design of self-regulated insulin delivery systems.


Asunto(s)
Glucosa/química , Glucosa/metabolismo , Nanosferas/química , Hidrogeles/química , Hidrogeles/metabolismo , Permeabilidad
12.
Nanoscale ; 9(2): 509-516, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27942663

RESUMEN

This work reports the preparation of multifunctional hybrid microgels based on the one-pot free radical dispersion polymerization of hydrogen-bonding complexes in water, formed from hydroxyl/carboxyl bearing carbon dots with 4-vinylphenylboronic acid and acrylamide comonomers, which can realize the simultaneous optical detection of glucose using near infrared light and glucose-responsive insulin delivery.

13.
ACS Appl Mater Interfaces ; 9(22): 18639-18649, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28485151

RESUMEN

Multifunctional nanocarriers with good biocompatibility, good imaging function, and smart drug delivery ability are crucial for realizing highly efficient imaging-guided chemotherapy in vivo. This paper reports a type of chitosan-carbon dot (CD) hybrid nanogels (CCHNs, ∼65 nm) by integrating pH-sensitive chitosan and fluorescent CDs into a single nanostructure for simultaneous near-infrared (NIR) imaging and NIR/pH dual-responsive drug release to improve therapeutic efficacy. Such CCHNs were synthesized via a nonsolvent-induced colloidal nanoparticle formation of chitosan-CD complexes assisted by ethylenediaminetetraacetic acid (EDTA) molecules in the aqueous phase. The selective cross-linking of chitosan chains in the nanoparticles can immobilize small CDs complexed in the chitosan networks. The resultant CCHNs display high colloidal stability, high loading capacity for doxorubicin (DOX), bright and stable fluorescence from UV to NIR wavelength range, efficient NIR photothermal conversion, and intelligent drug release in response to both NIR light and change in pH. The results from in vitro tests on cell model and in vivo tests on different tissues of animal model indicate that the CCHNs are nontoxic. The DOX-loaded CCHNs can permeate into the implanted tumor on mice and release drug molecules efficiently on site to inhibit tumor growth. The additional photothermal treatments from NIR irradiation can further inhibit the tumor growth, benefited from the effective NIR photothermal conversion of CCHNs. The demonstrated CCHNs manifest a great promise toward multifunctional intelligent nanoplatform for highly efficient imaging-guided cancer therapy with low side effects.


Asunto(s)
Nanopartículas , Animales , Carbono , Quitosano , Doxorrubicina , Ratones , Polietilenglicoles , Polietileneimina
14.
Adv Healthc Mater ; 6(6)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28121065

RESUMEN

A dual-layer shell hollow nanostructure as drug carrier that provides instant on/off function for drug release and contrast enhancement for multimodal imaging is reported. The on-demand drug release is triggered by irradiation of an external magnetic field. The nanocarrier also demonstrates a high drug loading capacity and synergistic magnetic-thermal and chemotherapy.


Asunto(s)
Quitosano , Portadores de Fármacos , Campos Magnéticos , Imagen por Resonancia Magnética , Nanopartículas , Tomografía de Coherencia Óptica , Animales , Línea Celular Tumoral , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico
15.
Nanoscale ; 9(4): 1434-1442, 2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28094402

RESUMEN

Loading and controlled release of sufficient hydrophobic drugs to tumor cells has been the bottleneck in chemotherapy for decades. Herein we report the development of a fluorescent and mesoporous carbon nanoshell (FMP-CNS) that exhibits a loading capacity for the hydrophobic drug paclitaxel (PTX) as high as ∼80 wt% and releases the drug in a controllable fashion under NIR irradiation (825 nm) at an intensity of 1.5 W cm-2. The high drug loading is primarily attributed to its mesoporous structure and to the supramolecular π-stacking between FMP-CNSs and PTX molecules. The FMP-CNS also exhibits wavelength-tunable and upconverted fluorescence properties and thus can serve as an optical marker for confocal, two-photon, and near infrared (NIR) fluorescence imaging. Furthermore, our in vitro results indicate that FMP-CNSs demonstrate high therapeutic efficacy through the synergistic effect of combined chemo-photothermal treatment. In vivo studies demonstrate marked suppression of tumor growth in mice bearing rat C6 glioblastoma after administration with a single intratumoral injection of PTX-loaded FMP-CNS.


Asunto(s)
Carbono , Portadores de Fármacos/química , Liberación de Fármacos , Nanocáscaras , Animales , Glioblastoma/tratamiento farmacológico , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Desnudos , Paclitaxel/administración & dosificación , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biomater Sci ; 4(7): 1062-73, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27184106

RESUMEN

Carbon nanomaterials have gained significant momentum as promising candidate materials for biomedical applications due to their unique structure and properties. After functionalization with magnetic and fluorescent components, the resultant carbon-based nanohybrids can serve not only as magnetic resonance and fluorescence imaging contrast agents, but also as photothermally/magneto-thermally responsive drug carriers for combined photothermo/chemotherapy. This mini-review summarizes the latest developments and applications and addresses the future perspectives of carbon-based magnetic and fluorescent nanohybrids in the biomedical field.


Asunto(s)
Carbono/química , Portadores de Fármacos/química , Fluorescencia , Magnetismo , Nanopartículas/química , Medios de Contraste/química , Liberación de Fármacos , Humanos , Imagen Multimodal
17.
J Phys Chem B ; 109(42): 19741-7, 2005 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16853553

RESUMEN

Laser light scattering and transmission electronic microscopy have been used to study the self-assembled structures of mono- and bisadducts of fullerene carboxylic acids in tetrahydrofuran (THF) and their sodium salts in aqueous solutions, respectively. In THF, the self-association of monoadducts of fullerene carboxylic acid (MFCA) produces large but narrowly distributed particles with R(h) approximately 145 nm. The self-aggregates from the bisadducts of fullerene carboxylic acid (BFCA) in THF are relatively small in size (R(h) approximately 80 nm) due to the better solubility. After the ionization of carboxylic acid groups on the C(60) cage in dilute NaOH solutions, these aggregates dissolved and reorganized. The self-assembly of the monoadducts of sodium carboxylate fullerenes (MSCF) produces small solid spherical particles with R(h) approximately 32 nm. The ratio of R(g)/R(h) approximately 0.83 indicates that the particles have a nearly uniform density. The increase in concentrations leads to strong interparticle associations to form rodlike and irregularly shaped large aggregates. In contrast, the self-assembly of bisadducts of sodium carboxylate fullerenes (BSCF) results in hollow shells with mainly two different size scales of R(h) approximately 23 nm and R(h) approximately 104 nm. At high concentrations, the hollow shells associate and melt together to generate three-dimensional networks.


Asunto(s)
Ácidos Carboxílicos/síntesis química , Fulerenos/química , Ácidos/química , Cromatografía Líquida de Alta Presión , Furanos/química , Luz , Microscopía Electrónica de Transmisión , Dispersión de Radiación , Espectroscopía Infrarroja por Transformada de Fourier
19.
ACS Appl Mater Interfaces ; 7(29): 15735-45, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26148139

RESUMEN

Nanosized carbon dots (CDs) are emerging as superior fluorophores for biosensing and a bioimaging agent with excellent photostability, chemical inertness, and marginal cytotoxicity. This paper reports a facile one-pot strategy to immobilize the biocompatible and fluorescent CDs (∼6 nm) into the glucose-imprinted poly(N-isopropylacrylamide-acrylamide-vinylphenylboronic acid) [poly(NIPAM-AAm-VPBA)] copolymer microgels for continuous optical glucose detection. The CDs designed with surface hydroxyl/carboxyl groups can form complexes with the AAm comonomers via hydrogen bonds and, thus, can be easily immobilized into the gel network during the polymerization reaction. The resultant glucose-imprinted hybrid microgels can reversibly swell and shrink in response to the variation of surrounding glucose concentration and correspondingly quench and recover the fluorescence signals of the embedded CDs, converting biochemical signals to optical signals. The highly imprinted hybrid microgels demonstrate much higher sensitivity and selectivity for glucose detection than the nonimprinted hybrid microgels over a clinically relevant range of 0-30 mM at physiological pH and benefited from the synergistic effects of the glucose molecular contour and the geometrical constraint of the binding sites dictated by the glucose imprinting process. The highly stable immobilization of CDs in the gel networks provides the hybrid microgels with excellent optical signal reproducibility after five repeated cycles of addition and dialysis removal of glucose in the bathing medium. In addition, the hybrid microgels show no effect on the cell viability in the tested concentration range of 25-100 µg/mL. The glucose-imprinted poly(NIPAM-AAm-VPBA)-CDs hybrid microgels demonstrate a great promise for a new glucose sensor that can continuously monitor glucose level change.


Asunto(s)
Líquidos Corporales/química , Geles/química , Glucosa/análisis , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Espectrometría de Fluorescencia/métodos , Adsorción , Animales , Fluorescencia , Glucosa/química , Humanos , Concentración de Iones de Hidrógeno , Impresión Molecular , Tamaño de la Partícula
20.
Biomaterials ; 53: 117-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25890712

RESUMEN

An efficient nanomedical platform that can combine two-photon cell imaging, near infrared (NIR) light and pH dual responsive drug delivery, and photothermal treatment was successfully developed based on fluorescent porous carbon-nanocapsules (FPC-NCs, size ∼100 nm) with carbon dots (CDs) embedded in the shell. The stable, excitation wavelength (λex)-tunable and upconverted fluorescence from the CDs embedded in the porous carbon shell enable the FPC-NCs to serve as an excellent confocal and two-photon imaging contrast agent under the excitation of laser with a broad range of wavelength from ultraviolet (UV) light (405 nm) to NIR light (900 nm). The FPC-NCs demonstrate a very high loading capacity (1335 mg g(-1)) toward doxorubicin drug benefited from the hollow cavity structure, porous carbon shell, as well as the supramolecular π stacking and electrostatic interactions between the doxorubicin molecules and carbon shell. In addition, a responsive release of doxorubicin from the FPC-NCs can be activated by lowering the pH to acidic (from 7.4 to 5.0) due to the presence of pH-sensitive carboxyl groups on the FPC-NCs and amino groups on doxorubicin molecules. Furthermore, the FPC-NCs can absorb and effectively convert the NIR light to heat, thus, manifest the ability of NIR-responsive drug release and combined photothermal/chemo-therapy for high therapeutic efficacy.


Asunto(s)
Carbono/química , Portadores de Fármacos , Nanocápsulas , Espectroscopía Infrarroja Corta/métodos , Humanos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Estructura Molecular , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA