Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474362

RESUMEN

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Asunto(s)
Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Receptores TIE/metabolismo , Animales , Biomarcadores/metabolismo , Capilares/metabolismo , Células Endoteliales/citología , Células Endoteliales/patología , Células HEK293 , Hepatocitos/citología , Hepatocitos/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Hígado/irrigación sanguínea , Hígado/patología , Cirrosis Hepática/diagnóstico , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 121(1): e2310685120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147550

RESUMEN

Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.


Asunto(s)
Leptina , Osificación Heterotópica , Animales , Ratones , Leptina/genética , Ligandos , Ratones Endogámicos C57BL , Osteogénesis , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
3.
PLoS Pathog ; 18(11): e1010953, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327346

RESUMEN

Campylobacter jejuni is a food-borne zoonotic pathogen of worldwide concern and the leading cause of bacterial diarrheal disease. In contrast to other enteric pathogens, C. jejuni has strict growth and nutritional requirements but lacks many virulence factors that have evolved for pathogenesis or interactions with the host. It is unclear how this bacterium has adapted to an enteric lifestyle. Here, we discovered that the CheO protein (CJJ81176_1265) is required for C. jejuni colonization of mice gut through its role in chemotactic control of flagellar rotation in oxygen-limiting environments. CheO interacts with the chemotaxis signaling proteins CheA and CheZ, and also with the flagellar rotor components FliM and FliY. Under microaerobic conditions, CheO localizes at the cellular poles where the chemosensory array and flagellar machinery are located in C. jejuni and its polar localization depends on chemosensory array formation. Several chemoreceptors that mediate energy taxis coordinately determine the bipolar distribution of CheO. Suppressor screening for a ΔcheO mutant identified that a single residue variation in FliM can alleviate the phenotype caused by the absence of CheO, confirming its regulatory role in the flagellar rotor switch. CheO homologs are only found in species of the Campylobacterota phylum, mostly species of host-associated genera Campylobacter, Helicobacter and Wolinella. The CheO results provide insights into the complexity of chemotaxis signal transduction in C. jejuni and closely related species. Importantly, the recruitment of CheO into chemosensory array to promote chemotactic behavior under hypoxia represents a new adaptation strategy of C. jejuni to human and animal intestines.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Ratones , Humanos , Animales , Campylobacter jejuni/genética , Flagelos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quimiotaxis , Hipoxia/metabolismo , Infecciones por Campylobacter/metabolismo
4.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935054

RESUMEN

Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.

5.
BMC Musculoskelet Disord ; 25(1): 429, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824539

RESUMEN

This article reports a case of a female patient admitted with swelling and subcutaneous mass in the right forearm, initially suspected to be multiple nerve fibroma. However, through preoperative imaging and surgery, the final diagnosis confirmed superficial thrombophlebitis. This condition resulted in entrapment of the radial nerve branch, leading to noticeable nerve entrapment and radiating pain. The surgery involved the excision of inflammatory tissue and thrombus, ligation of the cephalic vein, and complete release of the radial nerve branch. Postoperative pathology confirmed the presence of Superficial Thrombophlebitis. Through this case, we emphasize the importance of comprehensive utilization of clinical, imaging, and surgical interventions for more accurate diagnosis and treatment. This is the first clinical report of radial nerve branch entrapment due to superficial thrombophlebitis.


Asunto(s)
Antebrazo , Síndromes de Compresión Nerviosa , Nervio Radial , Tromboflebitis , Humanos , Femenino , Tromboflebitis/cirugía , Tromboflebitis/etiología , Tromboflebitis/diagnóstico , Síndromes de Compresión Nerviosa/etiología , Síndromes de Compresión Nerviosa/cirugía , Antebrazo/inervación , Antebrazo/irrigación sanguínea , Antebrazo/cirugía , Nervio Radial/cirugía , Neuropatía Radial/etiología , Neuropatía Radial/cirugía , Persona de Mediana Edad
6.
Biochem Biophys Res Commun ; 671: 236-245, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37307707

RESUMEN

Metastasis-associated in colon cancer 1 (MACC1) is an oncogene associated with the progression and metastasis of many solid cancer entities. High expression of MACC1 is found in colorectal cancer (CRC) tissues. So far, the role of MACC1 in CRC cell pyroptosis and resistance to irinotecan is unclear. The cleavage of Gasdermin-E (GSDME) is the main executors of activated pyroptosis. We found that GSDME enhanced CRC cell pyroptosis and reduced their resistance to irinotecan, while MACC1 inhibited the cleavage of GSDME and CRC cell pyroptosis, promoted CRC cell proliferation, and enhanced the resistance of CRC cells to irinotecan. Therefore, CRC cells with high MACC1 expression and low GSDME expression had higher resistance to irinotecan, while CRC cells with low MACC1 expression and high GSDME expression had lower resistance to irinotecan. Consistently, by analyzing CRC patients who received FOLFIRI (Fluorouracil + Irinotecan + Leucovorin) in combination with chemotherapy in the GEO database, we found that CRC patients with low MACC1 expression and high GSDME expression had higher survival rate. Our study suggests that the expression of MACC1 and GSDME can be used as detection markers to divide CRC patients into irinotecan resistant and sensitive groups, helping to determine the treatment strategy of patients.


Asunto(s)
Neoplasias Colorrectales , Gasderminas , Humanos , Irinotecán/farmacología , Piroptosis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
7.
BMC Med ; 21(1): 115, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36978108

RESUMEN

BACKGROUND: Adenoma-adenocarcinoma transition is a key feature of colorectal cancer (CRC) occurrence and is closely regulated by tumor-associated macrophages (TAMs) and CD8+ T cells. Here, we investigated the effect of the NF-κB activator 1 (Act1) downregulation of macrophages in the adenoma-adenocarcinoma transition. METHODS: This study used spontaneous adenoma-developing ApcMin/+, macrophage-specific Act1-knockdown (anti-Act1), and ApcMin/+; anti-Act1 (AA) mice. Histological analysis was performed on CRC tissues of patients and mice. CRC patients' data retrieved from the TCGA dataset were analyzed. Primary cell isolation, co-culture system, RNA-seq, and fluorescence-activated cell sorting (FACS) were used. RESULTS: By TCGA and TISIDB analysis, the downregulation of Act1 expression in tumor tissues of CRC patients negatively correlated with accumulated CD68+ macrophages in the tumor. Relative expression of EMT markers in the tumor enriched ACT1lowCD68+ macrophages of CRC patients. AA mice showed adenoma-adenocarcinoma transition, TAMs recruitment, and CD8+ T cell infiltration in the tumor. Macrophages depletion in AA mice reversed adenocarcinoma, reduced tumor amounts, and suppressed CD8+ T cell infiltration. Besides, macrophage depletion or anti-CD8a effectively inhibited metastatic nodules in the lung metastasis mouse model of anti-Act1 mice. CRC cells induced activation of IL-6/STAT3 and IFN-γ/NF-κB signaling and the expressions of CXCL9/10, IL-6, and PD-L1 in anti-Act1 macrophages. Anti-Act1 macrophages facilitated epithelial-mesenchymal-transition and CRC cells' migration via CXCL9/10-CXCR3-axis. Furthermore, anti-Act1 macrophages promoted exhaustive PD1+ Tim3+ CD8+ T cell formation. Anti-PD-L1 treatment repressed adenoma-adenocarcinoma transition in AA mice. Silencing STAT3 in anti-Act1 macrophages reduced CXCL9/10 and PD-L1 expression and correspondingly inhibited epithelial-mesenchymal-transition and CRC cells' migration. CONCLUSIONS: Act1 downregulation in macrophages activates STAT3 that promotes adenoma-adenocarcinoma transition via CXCL9/10-CXCR3-axis in CRC cells and PD-1/PD-L1-axis in CD8+ T cells.


Asunto(s)
Adenocarcinoma , Adenoma , Neoplasias Colorrectales , Animales , Ratones , Adenocarcinoma/patología , Adenoma/genética , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Terapia de Inmunosupresión , Interleucina-6 , Macrófagos/metabolismo , Macrófagos/patología , FN-kappa B/metabolismo , Humanos
8.
Hepatology ; 76(3): 660-675, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34940991

RESUMEN

BACKGROUND AND AIMS: No effective treatments are available for liver fibrosis. Angiogenesis is deeply involved in liver fibrogenesis. However, current controversial results suggest it is difficult to treat liver fibrosis through vascular targeting. There are three different microvessels in liver: portal vessels, liver sinusoids, and central vessels. The changes and roles for each of the three different vessels during liver fibrogenesis are unclear. We propose that they play different roles during liver fibrogenesis, and a single vascular endothelial cell (EC) regulator is not enough to fully regulate these three vessels to treat liver fibrosis. Therefore, a combined regulation of multiple different EC regulatory signaling pathway may provide new strategies for the liver fibrosis therapy. Herein, we present a proof-of-concept strategy by combining the regulation of leukocyte cell-derived chemotaxin 2 (LECT2)/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 signaling with that of vascular endothelial growth factor (VEGF)/recombinant VEGF (rVEGF) signaling. APPROACH AND RESULTS: The CCl4 -induced mouse liver fibrosis model and NASH model were both used. During fibrogenesis, vascular changes occurred at very early stage, and different liver vessels showed different changes and played different roles: decreased portal vessels, increased sinusoid capillarization and the increased central vessels the increase of portal vessels alleviates liver fibrosis, the increase of central vessels aggravates liver fibrosis, and the increase of sinusoid capillarization aggravates liver fibrosis. The combinational treatment of adeno-associated viral vector serotype 9 (AAV9)-LECT2-short hairpin RNA (shRNA) and rVEGF showed improved therapeutic effects, but it led to serious side effects. The combination of AAV9-LECT2-shRNA and bevacizumab showed both improved therapeutic effects and decreased side effects. CONCLUSIONS: Liver vascular changes occurred at very early stage of fibrogenesis. Different vessels play different roles in liver fibrosis. The combinational treatment of AAV9-LECT2-shRNA and bevacizumab could significantly improve the therapeutic effects on liver fibrosis.


Asunto(s)
Cirrosis Hepática , Factor A de Crecimiento Endotelial Vascular , Animales , Bevacizumab/efectos adversos , Modelos Animales de Enfermedad , Hígado/patología , Cirrosis Hepática/metabolismo , Ratones , ARN Interferente Pequeño/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Inorg Chem ; 62(15): 6181-6188, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37017640

RESUMEN

Cationic tuning for lanthanide (Ce3+/Pr3+)-activated inorganic phosphors with stable, efficient, and fast-decay 5d-4f emissions has emerged as an important strategy toward the continuing pursuit of superior scintillators. The in-depth understanding of the cationic effects on photo- and radioluminescence of lanthanides Ce3+ and Pr3+ centers is requisite for the rational cationic tuning. Here, we perform a systematic study on the structure and photo- and X-ray radioluminescence properties of K3RE(PO4)2:Ce3+/Pr3+ (RE = La, Gd, and Y) phosphors to elucidate the underlying cationic effects on their 4f-5d luminescence. By using the Rietveld refinements, low-temperature synchrotron-radiation vacuum ultraviolet-ultraviolet spectra, vibronic coupling analyses, and vacuum-referred binding energy schemes, the origins of lattice parameter evolutions, 5d excitation energies, 5d emission energies, and Stokes shifts as well as good emission thermal stabilities of K3RE(PO4)2:Ce3+ systems are revealed. In addition, the correlations of Pr3+ luminescence to Ce3+ in the same sites are also discussed. Finally, the X-ray excited luminescence manifests that the K3Gd(PO4)2:1%Ce3+ sample possesses a light yield of ∼10,217 photons/MeV, indicating its potentiality toward X-ray detection application. These results deepen the understanding of cationic effects on Ce3+ and Pr3+ 4f-5d luminescence and inspire the inorganic scintillator development.

10.
J Cell Mol Med ; 26(13): 3598-3607, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35656863

RESUMEN

LECT2 (leucocyte cell-derived chemotaxin 2) is a 16-kDa protein mainly produced by hepatocytes. It was first isolated in PHA-activated human T-cell leukaemia SKW-3 cells and originally identified as a novel neutrophil chemotactic factor. However, many lines of studies suggested that LECT2 was a pleiotropic protein, it not only functioned as a cytokine to exhibit chemotactic property, but also played multifunctional roles in some physiological conditions and pathological abnormalities, involving liver regeneration, neuronal development, HSC(haematopoietic stem cells) homeostasis, liver injury, liver fibrosis, hepatocellular carcinoma, metabolic disorders, inflammatory arthritides, systemic sepsis and systemic amyloidosis. Among the above studies, it was discovered that LECT2 could be a promising molecular biomarker and therapeutic target. This review summarizes LECT2-related receptors and pathways, basic and clinical researches, primarily in mice and human, for a better comprehension and management of these diseases in the future.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Factores Quimiotácticos , Péptidos y Proteínas de Señalización Intercelular , Ratones
11.
Cytokine ; 158: 155976, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35921790

RESUMEN

Long-standing inflammatory bowel disease predisposes to the development of colorectal cancer (CRC). Interleukin (IL) -6, a pivotal link between chronic inflammation and tumor progression, has recently been recognized as a potential therapeutic target. The effect of IL-6 on proliferation and metastasis of CRC by activating the STAT3 pathway has been widely demonstrated in recent years, but few on mediating tumor immune evasion. In this study, we found that IL-6 was remarkably overexpressed in CRC and its elevation was associated with a poor prognosis. We studied CRC tumorigenesis in vivo by inoculating MC38 tumors and induced-CRC model via AOM/DSS (azoxymethane/dextransulfate sodium) in IL-6 deficient (IL-6-/-) and wild-type (WT) mice and found that IL-6-/- mice were less susceptible to develop tumors, compared to WT mice. We detected CD8+ T cells via immunofluorescence and found they exhibit high expression in tumor of IL-6-/- mice. High level of IL-6 was found in colitis model, with down-regulation of MHC-I molecules. In in vitro experiments, we found that IL-6 may act as a negative regulator in IFNγ-STAT1-MHC-I signaling. In addition, vivo trials also confirmed that MHC-I mRNA level was negatively related to the existence of IL-6. Furthermore, the blockade of IL-6 also activated CD8+T-cell accumulation and led to the high PD-L1 expression in CRC, which can sensitize animals to anti-PD-1 therapy. Our study provides a research basis for the significant role of IL-6 in tumor evasion and highlights a novel target to improve the efficacy of immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Interleucina-6/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/metabolismo , Inmunoterapia , Ratones , Transducción de Señal , Escape del Tumor
12.
Chemistry ; 28(30): e202200381, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35357752

RESUMEN

Eu2+ -, Mn2+ - and Eu2+ -Mn2+ -doped CaMgSi2 O6 phosphors have been prepared by a high-temperature solid-state reaction. Systematic investigation of the concentration- and temperature-dependent luminescence of Mn2+ showed that Mn2+ ions occupy two distinct sites in CaMgSi2 O6 . Electron-vibration interaction (EVI) analyses of Mn2+ ions revealed Huang-Rhys factors of 4.73 and 2.82 as well as effective phonon energies of 313 and 383 cm-1 for the two sites. Eu2+ -Mn2+ energy transfer is also discussed, and its efficiency is estimated by lifetime and luminescence spectra. The different thermal quenching behaviours of Eu2+ and Mn2+ , the distinct emission colours of Eu2+ (blue, band peak at ∼451 nm) and Mn2+ (yellow-red range, band peaks at ∼583 and 693 nm) endow the co-doped samples with potential applications in luminescence thermometry and temperature-/excitation wavelength-responsive dual anti-counterfeiting.


Asunto(s)
Electrones , Europio , Manganeso/química , Transferencia de Energía , Iones , Temperatura , Vibración
13.
Exp Cell Res ; 399(2): 112482, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33434531

RESUMEN

IL-6-triggered Th17 cell expansion is responsible for the pathogenesis of many immune diseases including rheumatoid arthritis (RA). Traditionally, IL-6 induces Th17 cell differentiation through JAK-STAT3 signaling. In the present work, PKA inhibition reduces in vitro induction of Th17 cells, while IL-6 stimulation of T cells facilitates the internalization of A3AR and increased cAMP production in a GRK2 dependent manner. Inhibition of GRK2 by paroxetine (PAR) or genetic depletion of GRK2 restored A3AR distribution and prevented Th17 cell differentiation. Furthermore, in vivo PAR treatment effectively reduced the splenic Th17 cell proportion in a rat model of collagen-induced arthritis (CIA) which was accompanied by a significant improvement in clinical manifestations. These results indicate that IL-6-induced Th17 cell differentiation not only occurs through JAK-STAT3-RORγt but is also mediated through GRK2-A3AR-cAMP-PKA-CREB/ICER-RORγt. This elucidates the significance of GRK2-controlled cAMP signaling in the differentiation of Th17 cells and its potential application in treating Th17-driven immune diseases such as RA.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Interleucina-6/farmacología , Receptor de Adenosina A3/metabolismo , Células Th17/fisiología , Animales , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Interleucina-6/fisiología , Masculino , Ratas , Ratas Transgénicas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Th17/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
14.
BMC Med Imaging ; 22(1): 84, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538520

RESUMEN

OBJECTIVE: To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery. METHODS: A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model. RESULTS: Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits. CONCLUSION: The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC.


Asunto(s)
Neoplasias del Recto , Área Bajo la Curva , Humanos , Curva ROC , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/cirugía , Estudios Retrospectivos , Ultrasonografía
15.
Molecules ; 27(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35268811

RESUMEN

Reducing the surface reflectivity of silicon substrates is essential for preparing high-performance Si-based solar cells. We synthesized pyramid-nanowire-structured Si (Si-PNWs) anti-reflection substrates, which have excellent light-trapping ability (<4% reflectance). Furthermore, diethyl phthalate (DEP), a water-insoluble phthalic acid ester, was applied to optimize the Si-PNWs/PEDOT:PSS interface; the photoelectric conversion efficiency of heterojunction solar cells was shown to increase from 9.82% to 13.48%. We performed a detailed examination of the shape and optical characteristics of Si-PNWs, as well as associated photoelectric performance tests, to investigate the origin of performance improvements in Si-PNWs/PEDOT:PSS heterojunction solar cells (HSCs).

16.
Entropy (Basel) ; 24(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420519

RESUMEN

Blaum-Roth Codes are binary maximum distance separable (MDS) array codes over the binary quotient ring F2[x]/(Mp(x)), where Mp(x)=1+x+⋯+xp-1, and p is a prime number. Two existing all-erasure decoding methods for Blaum-Roth codes are the syndrome-based decoding method and the interpolation-based decoding method. In this paper, we propose a modified syndrome-based decoding method and a modified interpolation-based decoding method that have lower decoding complexity than the syndrome-based decoding method and the interpolation-based decoding method, respectively. Moreover, we present a fast decoding method for Blaum-Roth codes based on the LU decomposition of the Vandermonde matrix that has a lower decoding complexity than the two modified decoding methods for most of the parameters.

17.
J Biol Chem ; 295(25): 8514-8523, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32371395

RESUMEN

The suppressor of T-cell receptor (TCR) signaling (Sts) proteins Sts-1 and Sts-2 suppress receptor-mediated signaling pathways in various immune cells, including the TCR pathway in T cells and the Dectin-1 signaling pathway in phagocytes. As multidomain enzymes, they contain an N-terminal ubiquitin-association domain, a central Src homology 3 domain, and a C-terminal histidine phosphatase domain. Recently, a 2-histidine (2H) phosphoesterase motif was identified within the N-terminal portion of Sts. The 2H phosphoesterase motif defines an evolutionarily ancient protein domain present in several enzymes that hydrolyze cyclic phosphate bonds on different substrates, including cyclic nucleotides. It is characterized by two invariant histidine residues that play a critical role in catalytic activity. Consistent with its assignment as a phosphoesterase, we demonstrate here that the Sts-1 2H phosphoesterase domain displays catalytic, saturable phosphodiesterase activity toward the dinucleotide 2',3'-cyclic NADP. The enzyme exhibited a high degree of substrate specificity and selectively generated the 3'-nucleotide as the sole product. Sts-1 also had phosphodiesterase catalytic activity toward a 5-mer RNA oligonucleotide containing a 2',3'-cyclic phosphate group at its 3' terminus. To investigate the functional significance of Sts-1 2H phosphoesterase activity, we generated His-to-Ala variants and examined their ability to negatively regulate cellular signaling pathways. Substitution of either conserved histidine compromised the ability of Sts-1 to suppress signaling pathways downstream of both the TCR and the Dectin-1 receptor. Our results identify a heretofore unknown cellular enzyme activity associated with Sts-1 and indicate that this catalytic activity is linked to specific cell-signaling outcomes.


Asunto(s)
Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Animales , Dominio Catalítico , Humanos , Interferón gamma/metabolismo , Cinética , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , NADP/análogos & derivados , NADP/metabolismo , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Linfocitos T/citología , Linfocitos T/metabolismo
18.
Reprod Biol Endocrinol ; 19(1): 150, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600537

RESUMEN

The critical immune effectors, including T, B, and natural killer (NK) cells, dendritic cells, and macrophages participate in regulating immune responses during pregnancy. Among these immune cells, decidual NK (dNK) cells are involved in key placental development processes at the maternal-fetal interface, such as uterine spiral artery remodeling, trophoblast invasion, and decidualization. Mechanistically, dNK cells significantly influence pregnancy outcome by secreting cytokines, chemokines, and angiogenic mediators and by their interactions with trophoblasts and other decidual cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in the initiation and progression of human diseases. Although the functions of circulating miRNAs in pathological mechanism has been extensively studied, the regulatory roles of miRNAs in NK cells, especially in dNK cells, have been rarely reported. In this review, we analyze the effects of miRNA regulations of dNK cell functions on the immune system during gestation. We discuss aberrant expressions of certain miRNAs in dNK cells that may lead to pathological consequences, such as recurrent pregnancy loss (RPL). Interestingly, miRNA expression patterns are also different between dNK cells and peripheral NK (pNK) cells, and pNK cells in the first- and third-trimester of gestation. The dysregulation of miRNA plays a pivotal regulatory role in driving immune functions of dNK and pNK cells. Further understanding of the molecular mechanisms of miRNAs in dNK cells may provide new insights into the development of therapeutics to prevent pregnancy failure.


Asunto(s)
Decidua/inmunología , Células Asesinas Naturales/metabolismo , MicroARNs/fisiología , Embarazo , Aborto Habitual/genética , Aborto Habitual/inmunología , Aborto Habitual/patología , Decidua/metabolismo , Decidua/patología , Femenino , Humanos , MicroARNs/metabolismo , Embarazo/genética , Embarazo/inmunología , Trofoblastos/inmunología , Trofoblastos/metabolismo
19.
Anesthesiology ; 135(2): 233-245, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34195784

RESUMEN

BACKGROUND: Experimental and observational research suggests that combined epidural-general anesthesia may improve long-term survival after cancer surgery by reducing anesthetic and opioid consumption and by blunting surgery-related inflammation. This study therefore tested the primary hypothesis that combined epidural-general anesthesia improves long-term survival in elderly patients. METHODS: This article presents a long-term follow-up of patients enrolled in a previous trial conducted at five hospitals. Patients aged 60 to 90 yr and scheduled for major noncardiac thoracic and abdominal surgeries were randomly assigned to either combined epidural-general anesthesia with postoperative epidural analgesia or general anesthesia alone with postoperative intravenous analgesia. The primary outcome was overall postoperative survival. Secondary outcomes included cancer-specific, recurrence-free, and event-free survival. RESULTS: Among 1,802 patients who were enrolled and randomized in the underlying trial, 1,712 were included in the long-term analysis; 92% had surgery for cancer. The median follow-up duration was 66 months (interquartile range, 61 to 80). Among patients assigned to combined epidural-general anesthesia, 355 of 853 (42%) died compared with 326 of 859 (38%) deaths in patients assigned to general anesthesia alone: adjusted hazard ratio, 1.07; 95% CI, 0.92 to 1.24; P = 0.408. Cancer-specific survival was similar with combined epidural-general anesthesia (327 of 853 [38%]) and general anesthesia alone (292 of 859 [34%]): adjusted hazard ratio, 1.09; 95% CI, 0.93 to 1.28; P = 0.290. Recurrence-free survival was 401 of 853 [47%] for patients who had combined epidural-general anesthesia versus 389 of 859 [45%] with general anesthesia alone: adjusted hazard ratio, 0.97; 95% CI, 0.84 to 1.12; P = 0.692. Event-free survival was 466 of 853 [55%] in patients who had combined epidural-general anesthesia versus 450 of 859 [52%] for general anesthesia alone: adjusted hazard ratio, 0.99; 95% CI, 0.86 to 1.12; P = 0.815. CONCLUSIONS: In elderly patients having major thoracic and abdominal surgery, combined epidural-general anesthesia with epidural analgesia did not improve overall or cancer-specific long-term mortality. Nor did epidural analgesia improve recurrence-free survival. Either approach can therefore reasonably be selected based on patient and clinician preference.


Asunto(s)
Analgesia Epidural/mortalidad , Anestesia General/mortalidad , Evaluación Geriátrica/métodos , Procedimientos Quirúrgicos Operativos/mortalidad , Anciano , Anciano de 80 o más Años , Analgesia Epidural/métodos , Anestesia General/métodos , China/epidemiología , Quimioterapia Combinada , Femenino , Estudios de Seguimiento , Evaluación Geriátrica/estadística & datos numéricos , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Sobrevida
20.
Acta Pharmacol Sin ; 42(5): 755-766, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32855529

RESUMEN

ß-arrestin2 (ß-arr2) is, a key protein that mediates desensitization and internalization of G protein-coupled receptors and participates in inflammatory and immune responses. Deficiency of ß-arr2 has been found to exacerbate collagen antibody-induced arthritis (CAIA) through unclear mechanisms. In this study we tried to elucidate the molecular mechanisms underlying ß-arr2 depletion-induced exacerbation of CAIA. CAIA was induced in ß-arr2-/- and wild-type (WT) mice by injection of collagen antibodies and LPS. The mice were sacrificed on d 13 after the injection, spleen, thymus and left ankle joints were collected for analysis. Arthritis index (AI) was evaluated every day or every 2 days. We showed that ß-arr2-/- mice with CAIA had a further increase in the percentage of plasma cells in spleen as compared with WT mice with CAIA, which was in accordance with elevated serum IgG1 and IgG2A expression and aggravating clinical performances, pathologic changes in joints and spleen, joint effusion, and joint blood flow. Both LPS stimulation of isolated B lymphocytes in vitro and TNP-LPS challenge in vivo led to significantly higher plasma cell formation and antibodies production in ß-arr2-/- mice as compared with WT mice. LPS treatment induced membrane distribution of toll-like receptor 4 (TLR4) on B lymphocytes, accordingly promoted the nuclear translocation of NF-κB and the transcription of Blimp1. Immunofluorescence analysis confirmed that more TLR4 colocalized with ß-arr2 in B lymphocytes in response to LPS stimulation. Depletion of ß-arr2 restrained TLR4 on B lymphocyte membrane after LPS treatment and further enhanced downstream NF-κB signaling leading to additional increment in plasma cell formation. In summary, ß-arr2 depletion exacerbates CAIA and further increases plasma cell differentiation and antibody production through inhibiting TLR4 endocytosis and aggravating NF-κB signaling.


Asunto(s)
Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Células Plasmáticas/metabolismo , Arrestina beta 2/deficiencia , Animales , Anticuerpos Monoclonales/inmunología , Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/patología , Peso Corporal/fisiología , Diferenciación Celular/fisiología , Colágeno Tipo II/inmunología , Inmunidad Humoral/fisiología , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Activación de Linfocitos/fisiología , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA