Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23312, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161282

RESUMEN

ProBDNF is the precursor protein of brain-derived neurotrophic factor (BDNF) expressed in the central nervous system and peripheral tissues. Previous studies showed that the blood levels of both proBDNF and p75 neurotrophic receptors (p75NTR) in major depressive disorder (MDD) were increased, but which blood cell types express proBDNF and its receptors is not known. Furthermore, the relationship between proBDNF/p75NTR and inflammatory cytokines in peripheral blood of MDD is unclear. Peripheral blood mononuclear cells (PBMCs) and serum were obtained from depressive patients (n = 32) and normal donors (n = 20). We examined the expression of proBDNF and inflammatory markers and their correlative relationship in patients with major depression. Using flow cytometry analysis, we examined which blood cells express proBDNF and its receptors. Finally, the role of proBDNF/p75NTR signal in inflammatory immune activity of PBMCs was verified in vitro experiments. Inflammatory cytokines in PBMC from MDD patients were increased and correlated with the major depression scores. The levels of IL-1ß and IL-10 were also positively correlated with the major depression scores, while the levels of TNF-α and IL-6 were negatively correlated with the major depression scores. Intriguingly, the levels of sortilin were positively correlated with IL-1ß. Q-PCR and Western blots showed proBDNF, p75NTR, and sortilin levels were significantly increased in PBMCs from MDD patients compared with that from the normal donors. Flow cytometry studies showed that proBDNF and p75NTR were present mainly in CD4+ and CD8+ T cells. The number of proBDNF and p75NTR positive CD4+ and CD8+ T cells from MDD patients was increased and subsequently reversed after therapeutic management. Exogenous proBDNF protein or p75ECD-Fc treatment of cultured PBMC affected the release of inflammatory cytokines in vitro. ProBDNF promoted the expression of inflammatory cytokines, while p75ECD-Fc inhibited the expression of inflammatory cytokines. Given there was an inflammatory response of lymphocytes to proBDNF, it is suggested that proBDNF/p75NTR signaling may upstream inflammatory cytokines in MDD. Our data suggest that proBDNF/p75NTR signaling may not only serve as biomarkers but also may be a potential therapeutic target for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Regulación hacia Arriba , Linfocitos T CD8-positivos/metabolismo , Depresión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo
2.
CNS Neurosci Ther ; 30(4): e14535, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38168094

RESUMEN

INTRODUCTION: Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS: This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS: Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS: Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Traumatismos de la Médula Espinal , Animales , Ratas , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Proteína GAP-43/genética , Proteína GAP-43/metabolismo
3.
Neuropharmacology ; 258: 110089, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39033904

RESUMEN

Autism spectrum disorder (ASD) is neurodevelopmental disorder with a high incidence rate, characterized by social deficits and repetitive behaviors. There is currently no effective management available to treat the core symptoms of ASD; however, oxidative stress has been implicated in its pathogenesis. Edaravone (EDA), a free-radical scavenger, is used to treat amyotrophic lateral sclerosis (ALS) and acute ischemic stroke (AIS). Here, we hypothesized that an oral formula of EDA may have therapeutic efficacy in the treatment of core ASD symptoms. A rat model of autism was established by prenatal exposure to valproic acid (VPA), and the offsprings were orally treated with EDA at low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg) doses once daily for 28 days starting from postnatal day 25 (PND25). Oral EDA administration alleviated the core symptoms in VPA rats in a dose-dependent manner, including repetitive stereotypical behaviors and impaired social interaction. Furthermore, oral administration of EDA significantly reduced oxidative stress in a dose-dependent manner, as evidenced by a reduction in oxidative stress markers and an increase in antioxidants in the blood and brain. In addition, oral EDA significantly attenuated downstream pathologies, including synaptic and mitochondrial damage in the brain. Proteomic analysis further revealed that EDA corrected the imbalance in brain oxidative reduction and mitochondrial proteins induced by prenatal VPA administration. Overall, these findings demonstrate that oral EDA has therapeutic potential for ASD by targeting the oxidative stress pathway of disease pathogenesis and paves the way towards clinical studies.


Asunto(s)
Trastorno del Espectro Autista , Modelos Animales de Enfermedad , Edaravona , Estrés Oxidativo , Ácido Valproico , Animales , Ácido Valproico/farmacología , Ácido Valproico/administración & dosificación , Edaravona/farmacología , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/inducido químicamente , Femenino , Estrés Oxidativo/efectos de los fármacos , Masculino , Administración Oral , Embarazo , Ratas , Ratas Sprague-Dawley , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/administración & dosificación , Depuradores de Radicales Libres/uso terapéutico , Relación Dosis-Respuesta a Droga , Conducta Estereotipada/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Interacción Social/efectos de los fármacos
4.
Neuroprotection ; 1(2): 84-98, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223913

RESUMEN

The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-ß (Aß) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aß antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aß and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aß from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA