Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
PLoS Genet ; 19(12): e1011073, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048348

RESUMEN

The reproductive process in various species has undergone evolutionary adaptations at both the physiological and molecular levels, playing a significant role in maintaining their populations. In lepidopteran insects, the spermatophore is a unique structure formed in the female reproductive system, in which sperm storage and activation take place. It is known that the formation of the spermatophore is regulated by seminal fluid proteins derived from males. However, studies investigating the genetic mechanisms behind spermatophore formation in lepidopterans have been limited. In this study, our focus was on SPSL1, a gene that encodes a trypsin-type seminal fluid protein in Spodoptera frugiperda, a pest species with global invasive tendencies. Our findings revealed that SPSL1 expression was predominantly observed in the male reproductive tracts, and the disruption of this gene resulted in male sterility. Surprisingly, fluorescence analysis indicated that the absence of SPSL1 did not affect spermatogenesis or sperm migration within the male reproductive system. However, when females mated with SPSL1-mutant males, several defects were observed. These included disruptions in spermatophore formation, sperm activation in the copulatory bursae, and sperm migration into the spermathecae. Additionally, mass spectrometry analysis highlighted reduced levels of energy-related metabolites, suggesting that SPSL1 plays an essential role in promoting hydrolysis reactions during copulation. Consequently, our study demonstrates that SPSL1 is crucial for male fertility due to its functions in spermatophore formation and sperm activation. This research provides valuable insights into the genetic factors underlying reproductive processes in lepidopteran insects and sheds light on potential strategies for controlling invasive pest populations.


Asunto(s)
Semen , Espermatogonias , Animales , Masculino , Femenino , Espermatogonias/fisiología , Spodoptera/genética , Espermatozoides/fisiología , Espermatogénesis/genética , Insectos
2.
Proc Natl Acad Sci U S A ; 120(20): e2210991120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155843

RESUMEN

In 2021, the World Health Organization reclassified glioblastoma, the most common form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratumoral heterogeneity is a key contributor to therapeutic failure. To better define this heterogeneity, genome-wide chromatin accessibility and transcription profiles of clinical samples of glioblastomas and G4 IDHm astrocytomas were analyzed at single-cell resolution. These profiles afforded resolution of intratumoral genetic heterogeneity, including delineation of cell-to-cell variations in distinct cell states, focal gene amplifications, as well as extrachromosomal circular DNAs. Despite differences in IDH mutation status and significant intratumoral heterogeneity, the profiled tumor cells shared a common chromatin structure defined by open regions enriched for nuclear factor 1 transcription factors (NFIA and NFIB). Silencing of NFIA or NFIB suppressed in vitro and in vivo growths of patient-derived glioblastomas and G4 IDHm astrocytoma models. These findings suggest that despite distinct genotypes and cell states, glioblastoma/G4 astrocytoma cells share dependency on core transcriptional programs, yielding an attractive platform for addressing therapeutic challenges associated with intratumoral heterogeneity.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patología , Cromatina/genética , Transcriptoma , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Mutación , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
3.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37649383

RESUMEN

Single-cell high-throughput chromatin conformation capture technologies (scHi-C) has been used to map chromatin spatial organization in complex tissues. However, computational tools to detect differential chromatin contacts (DCCs) from scHi-C datasets in development and through disease pathogenesis are still lacking. Here, we present SnapHiC-D, a computational pipeline to identify DCCs between two scHi-C datasets. Compared to methods designed for bulk Hi-C data, SnapHiC-D detects DCCs with high sensitivity and accuracy. We used SnapHiC-D to identify cell-type-specific chromatin contacts at 10 Kb resolution in mouse hippocampal and human prefrontal cortical tissues, demonstrating that DCCs detected in the hippocampal and cortical cell types are generally associated with cell-type-specific gene expression patterns and epigenomic features. SnapHiC-D is freely available at https://github.com/HuMingLab/SnapHiC-D.


Asunto(s)
Cromatina , Epigenómica , Humanos , Animales , Ratones , Cromatina/genética , Hipocampo
5.
Nat Methods ; 18(3): 283-292, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33589836

RESUMEN

Genome-wide profiling of histone modifications can reveal not only the location and activity state of regulatory elements, but also the regulatory mechanisms involved in cell-type-specific gene expression during development and disease pathology. Conventional assays to profile histone modifications in bulk tissues lack single-cell resolution. Here we describe an ultra-high-throughput method, Paired-Tag, for joint profiling of histone modifications and transcriptome in single cells to produce cell-type-resolved maps of chromatin state and transcriptome in complex tissues. We used this method to profile five histone modifications jointly with transcriptome in the adult mouse frontal cortex and hippocampus. Integrative analysis of the resulting maps identified distinct groups of genes subject to divergent epigenetic regulatory mechanisms. Our single-cell multiomics approach enables comprehensive analysis of chromatin state and gene regulation in complex tissues and characterization of gene regulatory programs in the constituent cell types.


Asunto(s)
Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Código de Histonas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Epigénesis Genética/genética , Lóbulo Frontal/citología , Perfilación de la Expresión Génica , Células HeLa , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Análisis de la Célula Individual , Transcriptoma/genética
6.
Nat Chem Biol ; 16(2): 160-169, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31819270

RESUMEN

Pseudouridine synthases (PUSs) are responsible for installation of pseudouridine (Ψ) modification in RNA. However, the activity and function of the PUS enzymes remain largely unexplored. Here we focus on human PUS10 and find that it co-expresses with the microprocessor (DROSHA-DGCR8 complex). Depletion of PUS10 results in a marked reduction of the expression level of a large number of mature miRNAs and concomitant accumulation of unprocessed primary microRNAs (pri-miRNAs) in multiple human cells. Mechanistically, PUS10 directly binds to pri-miRNAs and interacts with the microprocessor to promote miRNA biogenesis. Unexpectedly, this process is independent of the catalytic activity of PUS10. Additionally, we develop a sequencing method to profile Ψ in the tRNAome and report PUS10-dependent Ψ sites in tRNA. Collectively, our findings reveal differential functions of PUS10 in nuclear miRNA processing and in cytoplasmic tRNA pseudouridylation.


Asunto(s)
Hidroliasas/metabolismo , MicroARNs/metabolismo , ARN de Transferencia/metabolismo , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular/fisiología , Citoplasma/genética , Citoplasma/metabolismo , Regulación de la Expresión Génica , Humanos , Hidroliasas/genética , Procesamiento Postranscripcional del ARN
7.
J Am Chem Soc ; 143(46): 19330-19340, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34780151

RESUMEN

The efficient isolation of immune cells with high purity and low cell damage is important for immunotherapy and remains highly challenging. We herein report a cell capture DNA network containing polyvalent multimodules for the specific isolation and in situ incubation of T lymphocytes (T-cells). Two ultralong DNA chains synthesized by an enzymatic amplification process were rationally designed to include functional multimodules as cell anchors and immune adjuvants. Mutually complementary sequences facilitated the formation of a DNA network and encapsulation of T-cells, as well as offering cutting sites of a restriction enzyme for the responsive release of T-cells and immune adjuvants. The purity of captured tumor-infiltrating T-cells reached 98%, and the viability of T-cells maintained ∼90%. The T-cells-containing DNA network was further administrated to a tumor lesion for localized immunotherapy. Our work provides a robust nanobiotechnology for efficient isolation of immune cells and other biological particles.


Asunto(s)
ADN/inmunología , Inmunoterapia , Melanoma/inmunología , Linfocitos T/inmunología , Animales , Ratones , Ratones Endogámicos C57BL
8.
Nat Chem Biol ; 14(7): 680-687, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29785056

RESUMEN

Uracil in DNA can be generated by cytosine deamination or dUMP misincorporation; however, its distribution in the human genome is poorly understood. Here we present a selective labeling and pull-down technology for genome-wide uracil profiling and identify thousands of uracil peaks in three different human cell lines. Surprisingly, uracil is highly enriched at the centromere of the human genome. Using mass spectrometry, we demonstrate that human centromeric DNA contains a higher level of uracil. We also directly verify the presence of uracil within two centromeric uracil peaks on chromosomes 6 and 11. Moreover, centromeric uracil is preferentially localized within the binding regions of the centromere-specific histone CENP-A and can be excised by human uracil-DNA glycosylase UNG. Collectively, our approaches allow comprehensive analysis of uracil in the human genome and provide robust tools for mapping and future functional studies of uracil in DNA.


Asunto(s)
Centrómero/metabolismo , Mapeo Cromosómico , ADN/metabolismo , Desoxiuridina/metabolismo , Uracilo/metabolismo , Línea Celular , Centrómero/genética , ADN/genética , Humanos , Espectrometría de Masas
9.
Proc Natl Acad Sci U S A ; 113(28): 7792-7, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354518

RESUMEN

NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)-a preferred substrate-for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , ADN/metabolismo , Simulación por Computador , Cristalografía , Escherichia coli , Furanos , Humanos , Modelos Químicos , Timina/análogos & derivados
10.
Angew Chem Int Ed Engl ; 58(1): 130-133, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30407705

RESUMEN

The emergence of unnatural DNA bases provides opportunities to demystify the mechanisms by which DNA polymerases faithfully decode chemical information on the template. It was previously shown that two unnatural cytosine bases (termed "M-fC" and "I-fC"), which are chemical labeling adducts of the epigenetic base 5-formylcytosine, can induce C-to-T transition during DNA amplification. However, how DNA polymerases recognize such unnatural cytosine bases remains enigmatic. Herein, crystal structures of unnatural cytosine bases pairing to dA/dG in the KlenTaq polymerase-host-guest complex system and pairing to dATP in the KlenTaq polymerase active site were determined. Both M-fC and I-fC base pair with dA/dATP, but not with dG, in a Watson-Crick geometry. This study reveals that the formation of the Watson-Crick geometry, which may be enabled by the A-rule, is important for the recognition of unnatural cytosines.


Asunto(s)
Citosina/química , ADN Polimerasa Dirigida por ADN/química , ADN/química , Timina/química , Humanos , Estructura Molecular
11.
Angew Chem Int Ed Engl ; 58(52): 18987-18993, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31617293

RESUMEN

Together with the more intuitive and commonly recognized conductance mechanisms of charge-hopping and tunneling, quantum-interference (QI) phenomena have been identified as important factors affecting charge transport through molecules. Consequently, establishing simple and flexible molecular-design strategies to understand, control, and exploit QI in molecular junctions poses an exciting challenge. Here we demonstrate that destructive quantum interference (DQI) in meta-substituted phenylene ethylene-type oligomers (m-OPE) can be tuned by changing the position and conformation of methoxy (OMe) substituents at the central phenylene ring. These substituents play the role of molecular-scale taps, which can be switched on or off to control the current flow through a molecule. Our experimental results conclusively verify recently postulated magic-ratio and orbital-product rules, and highlight a novel chemical design strategy for tuning and gating DQI features to create single-molecule devices with desirable electronic functions.

12.
J Am Chem Soc ; 140(41): 13190-13194, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30278133

RESUMEN

High-resolution detection of genome-wide 5-hydroxymethylcytosine (5hmC) sites of small-scale samples remains challenging. Here, we present hmC-CATCH, a bisulfite-free, base-resolution method for the genome-wide detection of 5hmC. hmC-CATCH is based on selective 5hmC oxidation, chemical labeling and subsequent C-to-T transition during PCR. Requiring only nanoscale input genomic DNA samples, hmC-CATCH enabled us to detect genome-wide hydroxymethylome of human embryonic stem cells in a cost-effective manner. Further application of hmC-CATCH to cell-free DNA (cfDNA) of healthy donors and cancer patients revealed base-resolution hydroxymethylome in the human cfDNA for the first time. We anticipate that our chemical biology approach will find broad applications in hydroxymethylome analysis of limited biological and clinical samples.


Asunto(s)
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Libres de Células/química , Genómica/métodos , 5-Metilcitosina/análisis , 5-Metilcitosina/química , Ácidos Nucleicos Libres de Células/genética , Células Madre Embrionarias/química , Genoma , Humanos , Técnicas de Amplificación de Ácido Nucleico , Oxidación-Reducción , Análisis de Secuencia de ADN
14.
Langmuir ; 32(49): 13159-13166, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951712

RESUMEN

A novel approach for the preparation of interconnected macroporous polymers with a controllable pore structure was reported. The method was based on the polymerization of water-in-oil Pickering high internal phase emulsion (HIPE) stabilized by polystyrene (PS)/silica composite particles. The composite Pickering stabilizers were facilely obtained by mixing positively charged PS microspheres and negatively charged silica nanoparticles, and their amphiphilicity could be delicately tailored by varying the ratio of PS and silica. The droplet size of Pickering HIPEs was characterized using an optical microscope. The pore structure of polymer foams was observed using a scanning electron microscope. The interconnectivity of macroporous polymers was evaluated upon their gas permeability, which was greatly improved after etching PS microspheres included in the Pickering stabilizers with tetrahydrofuran. As a result, fine tailoring of the pore structure of polymer foams could be realized by simply tuning the ratio of PS to silica particles in the composite stabilizer.

15.
Appl Opt ; 53(20): 4509-18, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25090072

RESUMEN

Autofocus is an important technique for high-speed image acquisition in the second-generation DNA sequencing system, and this paper studies the passive focus algorithm for the system, which consists of two parts: focus measurement (FM) and focus search (FS). Based on the properties of DNA chips' images, we choose the normalized variance as the FM algorithm and develop a new robust FS named adaptive prediction approximation combined search (APACS). APACS utilizes golden section search (GSS) to approximate the focus position and engages the curve-fitting search (CFS) to predict the position simultaneously in every step of GSS. When the difference between consecutive predictions meets the set precision, the search finishes. Otherwise, it ends as GSS. In APACS, we also propose an estimation method, named the combination of centroid estimation and overdetermined equations estimation by least squares solution, to calculate the initial vector for the nonlinear equations in APACS prediction, which reduces the iterations and accelerates the search. The simulation and measured results demonstrate that APACS not only maintains the stability but also reduces the focus time compared with GSS and CFS, which indicates APACS is a robust and fast FS for the fluorescence microscope in a sequencing system.


Asunto(s)
Algoritmos , ADN/genética , Aumento de la Imagen/métodos , Hibridación in Situ/métodos , Microscopía Fluorescente/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis de Secuencia de ADN/métodos , Retroalimentación , Aumento de la Imagen/instrumentación , Hibridación in Situ/instrumentación , Lentes , Microscopía Fluorescente/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/instrumentación
16.
Angew Chem Int Ed Engl ; 53(14): 3659-62, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24596302

RESUMEN

The AlkB family demethylases AlkB, FTO, and ALKBH5 recognize differentially methylated RNA/DNA substrates, which results in their distinct biological roles. Here we identify key active-site residues that contribute to their substrate specificity. Swapping such active-site residues between the demethylases leads to partially switched demethylation activities. Combined evidence from X-ray structures and enzyme kinetics suggests a role of the active-site residues in substrate recognition. Such a divergent active-site sequence may aid the design of selective inhibitors that can discriminate these homologue RNA/DNA demethylases.


Asunto(s)
Enzimas Reparadoras del ADN/genética , ADN/química , Dioxigenasas/genética , ARN/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Secuencia de Aminoácidos , Metilación de ADN , Enzimas Reparadoras del ADN/metabolismo , Dioxigenasas/metabolismo , Humanos , Datos de Secuencia Molecular , Estructura Molecular , Especificidad por Sustrato
17.
Microsyst Nanoeng ; 10: 52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646064

RESUMEN

E-beam lithography is a powerful tool for generating nanostructures and fabricating nanodevices with fine features approaching a few nanometers in size. However, alternative approaches to conventional spin coating and development processes are required to optimize the lithography procedure on irregular surfaces. In this review, we summarize the state of the art in nanofabrication on irregular substrates using e-beam lithography. To overcome these challenges, unconventional methods have been developed. For instance, polymeric and nonpolymeric materials can be sprayed or evaporated to form uniform layers of electron-sensitive materials on irregular substrates. Moreover, chemical bonds can be applied to help form polymer brushes or self-assembled monolayers on these surfaces. In addition, thermal oxides can serve as resists, as the etching rate in solution changes after e-beam exposure. Furthermore, e-beam lithography tools can be combined with cryostages, evaporation systems, and metal deposition chambers for sample development and lift-off while maintaining low temperatures. Metallic nanopyramids can be fabricated on an AFM tip by utilizing ice as a positive resistor. Additionally, Ti/Au caps can be patterned around a carbon nanotube. Moreover, 3D nanostructures can be formed on irregular surfaces by exposing layers of anisole on organic ice surfaces with a focused e-beam. These advances in e-beam lithography on irregular substrates, including uniform film coating, instrumentation improvement, and new pattern transferring method development, substantially extend its capabilities in the fabrication and application of nanoscale structures.

18.
Nat Biotechnol ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336903

RESUMEN

Dynamic 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) modifications to DNA regulate gene expression in a cell-type-specific manner and are associated with various biological processes, but the two modalities have not yet been measured simultaneously from the same genome at the single-cell level. Here we present SIMPLE-seq, a scalable, base resolution method for joint analysis of 5mC and 5hmC from thousands of single cells. Based on orthogonal labeling and recording of 'C-to-T' mutational signals from 5mC and 5hmC sites, SIMPLE-seq detects these two modifications from the same molecules in single cells and enables unbiased DNA methylation dynamics analysis of heterogeneous biological samples. We applied this method to mouse embryonic stem cells, human peripheral blood mononuclear cells and mouse brain to give joint epigenome maps at single-cell and single-molecule resolution. Integrated analysis of these two cytosine modifications reveals distinct epigenetic patterns associated with divergent regulatory programs in different cell types as well as cell states.

19.
J Phys Chem B ; 128(12): 2885-2896, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38488148

RESUMEN

Polydopamine (pDA) is a valuable material with wide-ranging potential applications. However, the complex and debated nature of dopamine polymerization complicates our understanding. Specifically, the impact of foreign substances, especially proteins, on pDA formation adds an additional layer of subtlety and complexity. This study delves into specific surface features of proteins that predominantly shape their impact on dopamine polymerization. Notably, the biotin-binding site emerges as a critical region responsible for the pronounced inhibitory effect of avidin and neutravidin on the dopamine polymerization process. The binding of biotin successfully mitigates these inhibitory effects. Moreover, several nucleases demonstrated a significant hindrance to pDA formation, with their impact substantially alleviated through the introduction of DNA. It is speculated that hydrogen bonding, electrostatic, cation-π, and/or hydrophobic interactions may underlie the binding between protein surfaces and diverse oligomeric intermediates formed by the oxidation products of dopamine. Additionally, we observed a noteworthy blocking effect on the dopamine polymerization reaction induced by erythropoietin (EPO), a glycoprotein hormone known for its role in stimulating red blood cell production and demonstrating neuroprotective effects. The inhibitory influence of EPO persisted even after deglycosylation. These findings not only advance our comprehension of the mechanisms underlying dopamine polymerization but also provide strategic insights for manipulating the reaction to tailor desired biomaterials.


Asunto(s)
Biotina , Dopamina , Dopamina/química , Polimerizacion , Materiales Biocompatibles
20.
Biol Psychiatry ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821194

RESUMEN

Suicide is the second leading cause of death in U.S. adolescents and young adults and is generally associated with a psychiatric disorder. Suicidal behavior has a complex etiology and pathogenesis. Moderate heritability suggests genetic causes. Associations between childhood and recent life adversity indicate contributions from epigenetic factors. Genomic contributions to suicide pathogenesis remain largely unknown. This article is based on a workshop held to design strategies to identify molecular drivers of suicide neurobiology that would be putative new treatment targets. The panel determined that while bulk tissue studies provide comprehensive information, single-nucleus approaches that identify cell type-specific changes are needed. While single-nuclei techniques lack information on cytoplasm, processes, spines, and synapses, spatial multiomic technologies on intact tissue detect cell alterations specific to brain tissue layers and subregions. Because suicide has genetic and environmental drivers, multiomic approaches that combine cell type-specific epigenome, transcriptome, and proteome provide a more complete picture of pathogenesis. To determine the direction of effect of suicide risk gene variants on RNA and protein expression and how these interact with epigenetic marks, single-nuclei and spatial multiomics quantitative trait loci maps should be integrated with whole-genome sequencing and genome-wide association databases. The workshop concluded with a recommendation for the formation of an international suicide biology consortium that will bring together brain banks and investigators with expertise in cutting-edge omics technologies to delineate the biology of suicide and identify novel potential treatment targets to be tested in cellular and animal models for drug and biomarker discovery to guide suicide prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA