Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 205, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270700

RESUMEN

Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME. To date, it has been wildly considered that TP53 is able to mediate tumor immune escape. Herein, we summarized the relationship between TP53 gene and tumors, discussed the mechanism of Mut p53 mediated tumor immune escape, and summarized the progress of applying p53 protein in immunotherapy. This study will provide a basic basis for further exploration of therapeutic strategies targeting p53 protein.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Genes p53 , Neoplasias/genética , Cognición , Inestabilidad Genómica , Microambiente Tumoral/genética
2.
Transl Oncol ; 45: 101972, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705053

RESUMEN

BACKGROUND: Accumulating evidence has shown that circular RNAs (circRNAs) are involved in gastric cancer (GC) tumorigenesis. However, specific functional circRNAs in GC remain to be discovered, and their underlying mechanisms remain to be elucidated. METHODS: CircRNAs that were differentially expressed between GC tissues and controls were analyzed using a circRNA microarray dataset. The expression of circVDAC3 in GC was determined using quantitative real-time PCR (qRT-PCR), and the structural features of circVDAC3 were validated. Cell function assays and animal experiments were conducted to explore the effects of circVDAC3 on GC. Finally, bioinformatics analysis, fluorescent in situ hybridization, and dual luciferase assays were used to analyze the downstream mechanisms of circVDAC3. RESULTS: Our results showed that circVDAC3 was downregulated in GC and inhibited the proliferation and metastasis of GC cells. Mechanistically, circVDAC3 acts as a competing endogenous RNA (ceRNA) of miR-592 and deregulates the repression of EIF4E3 by miR-592. EIF4E3 is downregulated in GC and overexpression of miR-592 or knockdown of EIF4E3 in circVDAC3-overexpressing cells weakens the anticancer effect of circVDAC3. CONCLUSION: Our study provides evidence that circVDAC3 affects the growth and metastasis of GC cells via the circVDAC3/miR-592/EIF4E3 axis. Our findings offer valuable insights into the mechanisms underlying GC tumorigenesis and suggest novel therapeutic strategies.

3.
Biochem Pharmacol ; 218: 115864, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37863330

RESUMEN

Investigating the role of ubiquitin-specific peptidase 10 (USP10) in triple-negative breast cancer (TNBC). Analyzed USP10 expression levels in tumors using public databases. Detected USP10 mRNA and protein levels in cell lines. Examined USP10 expression in tumor tissues from breast cancer patients. Conducted USP10 knockdown experiments and analyzed changes in cell proliferation and metastasis. Confirmed protein-protein interactions with USP10 through mass spectrometry, Co-IP, and fluorescence experiments. Assessed impact of USP10 on transcription factor 4 (TCF4) ubiquitination and validated TCF4's influence on TNBC cells. We initially identified a pronounced overexpression of USP10 across multiple tumor types, including TNBC. Subsequently, we observed a conspicuous upregulation of USP10 expression levels in breast cancer cell lines compared to normal breast epithelial cells. However, upon subsequent depletion of USP10 within cellular contexts, we noted a substantial attenuation of malignant proliferation and metastatic potential in TNBC cells. In subsequent experimental analyses, we elucidated the physical interaction between USP10 and the transcription factor TCF4, whereby USP10 facilitated the deubiquitination modification of TCF4, consequently promoting its protein stability and contributing to the initiation and progression of TNBC. Collectively, this study demonstrates that USP10 facilitated the deubiquitination modification of TCF4, consequently promoting its protein stability and contributing to the initiation and progression of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Ubiquitinación , Células Epiteliales/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ubiquitina Tiolesterasa/genética
4.
J Mol Model ; 21(6): 152, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25997603

RESUMEN

The mechanism of cyclohexane dehydrogenation catalyzed by the cationic dimer Ni2 (+) has been investigated at the B3LYP level of density functional theory. The first dehydrogenation occurs readily (it is exothermic by 30 kcal/mol), whereas the second and third dehydrogenations show weaker exothermicity than the first (23 and 21 kcal/mol, respectively). These three hydrogenations corresponding to the total dehydrogenation of one face of cyclohexane mainly proceed in the doublet state due to the presence of significant minimum-energy crossing points (MECPs). In addition, because the elimination of non-negligible amounts of [H2,2D2] and [2H2,D2] in this reaction was also observed in a previous experiment, we calculated a flip mechanism which would yield results that agree with those experimental results. This flip process includes two MECPs, meaning that the reaction mainly proceeds along the doublet potential energy surface but finishes in the quartet state. The rate-limiting step ((2)IM9 → (2)TS9/10 → (2)IM10) of the flip process is endothermic by 3 kcal/mol and the barrier to this step is 33 kcal/mol. Our calculations indicate that one-face dehydrogenation is a more favorable channel than the flip one. We excluded the possibility that eliminations of [H2,2D2] or [D2,2H2] could proceed through a mechanism involving Ni2 (+) dissociation, or that [H-D] scrambling could occur through (2)TS11/13 ((4)TS12/15), due to the large amounts of energy required. In the dissociation of (2)IM19, (2)[(H2)Ni2(C6H6)](+), a molecule of hydrogen first dissociates, leaving a final product of (2)[Ni2(C6H6)](+). Neither C6H6 nor (H2)Ni2 (+) can easily dissociate from (2)IM19 due to π backdonation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA