RESUMEN
Genetic variation in host immunity impacts the disproportionate burden of infectious diseases that can be experienced by First Nations peoples. Polymorphic human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptors (KIRs) are key regulators of natural killer (NK) cells, which mediate early infection control. How this variation impacts their responses across populations is unclear. We show that HLA-A∗24:02 became the dominant ligand for inhibitory KIR3DL1 in First Nations peoples across Oceania, through positive natural selection. We identify KIR3DL1∗114, widespread across and unique to Oceania, as an allele lineage derived from archaic humans. KIR3DL1∗114+NK cells from First Nations Australian donors are inhibited through binding HLA-A∗24:02. The KIR3DL1∗114 lineage is defined by phenylalanine at residue 166. Structural and binding studies show phenylalanine 166 forms multiple unique contacts with HLA-peptide complexes, increasing both affinity and specificity. Accordingly, assessing immunogenetic variation and the functional implications for immunity are fundamental toward understanding population-based disease associations.
RESUMEN
Cyanobacterial harmful algal blooms (CyanoHABs) pose significant threats to human health and natural ecosystems worldwide, primarily caused by water eutrophication, increased surface water temperature, and co-occurring microorganisms. Urgent action is needed to develop an eco-friendly solution to effectively curb the proliferation of CyanoHABs. Sophorolipids (SLs) are fully biodegradable biosurfactants synthesized by Starmerella bombicola. They can be classified into lactone and acid types. The lactone type displays strong antimicrobial activity, while the acid type exhibits good solubility, which make them ideal agents for mitigating CyanoHABs. Nevertheless, the broad utilization of SLs are hindered by their expensive production costs and the absence of effective genetic editing tools in the native host. In this study, we constructed recombinant strains capable of producing either acidic or lactonic SLs using the CRISPR-Cas9 gene editing system. The yields of acidic and lactonic SLs reached 53.64 g/L and 45.32 g/L in a shaking flask, respectively. In a 5 L fermenter, acidic SLs reached 129.7 g/L using low-cost glucose and rapeseed oil as substrates. The addition of 5 mg/L lactonic SLs effectively degraded cyanobacteria within 30 min, and a ratio of 8.25:1.75 of lactonic to acidic SLs showed the highest degradation efficiency. This study offers a safe and promising solution for CyanoHABs treatment.
Asunto(s)
Cianobacterias , Floraciones de Algas Nocivas , Humanos , Ecosistema , Cianobacterias/genética , LactonasRESUMEN
Surface water pollution has always posed a serious challenge to water quality management. Improving water quality management requires figuring out how to comprehend water quality conditions scientifically and effectively as well as quantitatively identify regional pollution sources. In this study, Xianghai Lake, a typical lake-type wetland on the Northeast China Plain, was taken as the research area. Based on a geographic information system (GIS) method and 11 water quality parameters, the single-factor evaluation and comprehensive water quality index (WQI) methods were used to comprehensively evaluate the water quality of the lake-type wetland in the level period. Four key water quality parameters were determined by the principal component analysis (PCA) method, and more convenient comprehensive water quality evaluation models, the minimum WQI considering weights (WQImin-w) and the minimum WQI without considering weights (WQImin-nw) were established. The multiple statistical method and the absolute principal component score-multiple liner regression (APCS-MLR) model were combined to analyse the lake pollution sources based on the spatial changes in pollutants. The findings demonstrated that the WQImin-nw model's water quality evaluation outcome was more accurate when weights were not taken into account. The WQImin-nw model can be used as a simple and convenient way to comprehend the variations in water quality in wetlands of lakes and reservoirs. It was concluded that the comprehensive water quality in the study area was at a "medium" level, and CODMn was the main limiting factor. Nonpoint source pollution (such as agricultural planting and livestock breeding) was the most important factor affecting the water quality of Xianghai Lake (with a comprehensive contribution rate of 31.65%). The comprehensive contribution rates of sediment endogenous and geological sources, phytoplankton and other plants, and water diversion and other hydrodynamic impacts accounted for 25.12%, 19.65%, and 23.58% of the total impact, respectively. This study can provide a scientific method for water quality assessment and management of lake wetlands, and an effective support for migration of migratory birds, habitat protection and grain production security.
Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Humedales , Lagos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Fitomejoramiento , Contaminación del Agua/análisis , ChinaRESUMEN
The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was â¼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.
Asunto(s)
Óxidos N-Cíclicos , Péptidos , Fosfolípidos , Marcadores de SpinRESUMEN
Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.
Asunto(s)
Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Animales , Anuros , Membrana Celular/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Membrana Dobles de Lípidos/química , Viabilidad Microbiana/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrolloRESUMEN
Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from an Australian tree frog and exhibits low micromolar activity against Gram-positive bacteria. The antimicrobial properties of Mac1 are linked to its disruption of bacterial lipid membranes, which has been studied extensively by in vitro nuclear magnetic resonance (NMR) spectroscopy and biophysical approaches. Although in vivo NMR has recently proven effective in probing peptide-lipid interplay in live bacterial cells, direct structural characterisation of AMPs has been prohibited by low sensitivity and overwhelming background noise. To overcome this issue, we report a recombinant expression protocol to produce isotopically enriched Mac1. We utilized a double-fusion construct to alleviate toxicity against the Escherichia coli host and generate the native N-free and C-amidated termini Mac1 peptide. The SUMO and intein tags allowed native N-terminus and C-terminal amidation, respectively, to be achieved in a one-pot reaction. The protocol yielded 0.1 mg/L of native, uniformly 15 N-labelled, Mac1, which possessed identical structure and activity to peptide obtained by solid-phase peptide synthesis.
Asunto(s)
Proteínas Anfibias/genética , Péptidos Catiónicos Antimicrobianos/genética , Proteínas Anfibias/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/aislamiento & purificaciónRESUMEN
Antimicrobial peptides (AMPs) that target lipid membranes show promise as alternatives to conventional antibiotics. However, the molecular mechanisms of membrane perturbation, as most studies are performed in model systems and in-cell structural studies, have yet to be achieved. Solid-state NMR spectroscopy is a valuable technique to investigate peptide-membrane interactions and to determine the structure of peptides, but the short lifespan of bacteria, especially under magic angle spinning conditions, has not permitted in-cell structural studies. Here, we present the first dynamic nuclear polarization (DNP)-NMR in-cell studies of Escherichia coli bacteria incubated with the AMP maculatin 1.1 (Mac1) in combination with novel nitroxide spin-labeled peptides 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC)-[F3W]-Mac1 (MacW) and TOAC-TOAC-MacW. The in-cell 13C and 15N signal NMR enhancements, and 1H spin-lattice T1 relaxation times showed that TOAC-MacW and TOAC-TOAC-MacW performed better than the more hydrophilic biradical AMUPol used for DNP studies. Furthermore, the pores formed by the AMP increased the signal enhancements and decreased T1 values of specifically 13C- and 15N-labeled Mac1. This approach has a great potential for determining the first in situ structures of AMPs in bacteria.-Sani, M.-A., Zhu, S., Hofferek, V., Separovic, F. Nitroxide spin-labeled peptides for DNP-NMR in-cell studies.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Espectroscopía de Resonancia Magnética/métodos , Marcadores de Spin , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Escherichia coli , Óxidos de Nitrógeno/químicaRESUMEN
Signal molecules are stimulators of multiple quroum-sensing virulence and biofilm formation. Small molecule analogues have been suspected as a potent inhibitor in therapeutic strategy. Herein, we synthesized a series of small molecule compounds from the 2, 8-bit derivatives of quinoline by Suzuki coupling reaction. We found that these compounds have the biofilm inhibitory effect in normal condition instead of phosphate limitation state. Furthermore, lacZ reporter strain assay and rhamnolipids as well as pyocyanin experiments showed that these compounds did not affect las and pqs system but reduced the expression of rhl. All these results suggest that quinoline derivatives can be treated as potent inhibitors against biofilm and reduce virulence through the rhl system. This research will be useful in designing new quorum sensing inhibitors to attenuate the infection of bacteria.
Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Quinolinas/farmacología , Virulencia/efectos de los fármacos , Operón Lac , Pseudomonas aeruginosa/patogenicidad , Quinolinas/química , Percepción de QuorumRESUMEN
In-cell NMR offers great insight into the characterization of the effect of toxins and antimicrobial peptides on intact cells. However, the complexity of intact live cells remains a significant challenge for the analysis of the effect these agents have on different cellular components. Here we show that 31P solid-state NMR can be used to quantitatively characterize the dynamic behaviour of DNA within intact live bacteria. Lipids were also identified and monitored, although 31P dynamic filtering methods indicated a range of dynamic states for phospholipid headgroups. We demonstrate the usefulness of this methodology for monitoring the activity of the antibiotic ampicillin and the antimicrobial peptide (AMP) maculatin 1.1 (Mac1.1) against Gram-negative bacteria. Perturbations in the dynamic behaviour of DNA were observed in treated cells, which indicated additional mechanisms of action for the AMP Mac1.1 not previously reported. This work highlights the value of 31P in-cell solid-state NMR as a tool for assessing the antimicrobial activity of antibiotics and AMPs in bacterial cells.
Asunto(s)
Antiinfecciosos/farmacología , Escherichia coli/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Fósforo/química , Estrés Fisiológico/efectos de los fármacos , Ampicilina/farmacología , ADN Bacteriano/metabolismo , Escherichia coli/ultraestructura , Viabilidad Microbiana/efectos de los fármacos , Ácidos Nucleicos/metabolismo , TemperaturaRESUMEN
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. The receptor-interacting protein kinase 3 (RIP3) was reported to be involved in many inflammatory disease. However, the mechanism of RIP3 in the pathogenesis of UC is still unclear. To investigate the effects and possible mechanism of RIP3 in UC pathogenesis, RIP3-/- mice was used in dextran sulfate sodium (DSS)-induced colitis model. It was found that by DSS-induced colitis, RIP3-/- mice showed significantly enhanced colitis symptoms, including increased weight loss, colon shortening, and colonic mucosa damage and severity, but decreased production of interleukin 6 and interleukin 1ß. The results showed that RIP3 deficiency could not ameliorate but exacerbate the severity of colitis. On the mechanism, it was found that messenger RNA expressions of several repair-associated cytokines including interleukin 6, interleukin 22, cyclooxygenase 2, epithelial growth factor receptor ligand Epiregulin and matrix metalloproteinase 10 were siginificant decreased in RIP3-/- mice. Thus, RIP3-/- mice exhibited an impaired tissue repair in response to DSS. In a conclusion, RIP3 deficiency exerted detrimental effects in DSS induced colitis partially because of the impaired repair-associated cytokines expression.
Asunto(s)
Colitis Ulcerosa/complicaciones , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/etiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Citocinas/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Índice de Severidad de la EnfermedadRESUMEN
Although much progress has been made in antiviral agents against hepatitis C virus (HCV) in recent years, novel HCV inhibitors with improved efficacy, optimized treatment duration and more affordable prices are still urgently needed. Here, we report the identification of a natural plant-derived lignan, trachelogenin (TGN), as a potent entry inhibitor of HCV without genotype specificity, and with low cytotoxicity. TGN was extracted and purified from Caulis trachelospermi, a traditional Chinese herb with anti-inflammatory and analgesic effects. A crucial function of TGN was the inhibition of HCV entry during a post-binding step without affecting virus replication, translation, assembly and release. TGN blocked virus infection by interfering with the normal interactions between HCV glycoprotein E2 and the host entry factor CD81, which are key processes for valid virus entry. In addition, TGN diminished HCV cell-to-cell spread and exhibited additional synergistic effects when combined with IFN or telaprevir. In conclusion, this study highlights the effect of a novel HCV entry inhibitor, TGN, which has a target that differs from those of the current antiviral agents. Therefore, TGN is a potential candidate for future cocktail therapies to treat HCV-infected patients.
Asunto(s)
4-Butirolactona/análogos & derivados , Hepacivirus/fisiología , Tetraspanina 28/metabolismo , Internalización del Virus/efectos de los fármacos , 4-Butirolactona/farmacología , Relación Dosis-Respuesta a Droga , Genotipo , Hepacivirus/genética , Hepatocitos/virología , Humanos , Estructura Molecular , Tetraspanina 28/genética , Ensamble de Virus/efectos de los fármacos , Liberación del Virus , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiologíaRESUMEN
Ciliated protozoa (ciliates) are an ecologically important group of microeukaryotes that play roles in the flow of energy and nutrients in aquatic and terrestrial ecosystems. The community distribution and diversity of soil ciliates in the Nianchu River Basin were investigated by sampling four major habitats, i.e., grassland, farmland, wetland and sea buckthorn forest during May, August and October 2020. Cultivation identification and enumeration of soil ciliates were performed by the non-submerged culture method, in vivo observations and protargol silver staining, and direct counting methods, respectively. A total of 199 species were identified representing, 89 genera, 67 families, 31 orders and 11 classes. Haptorida was the dominant group with 35 species, accounting for 17.59% of the total. The results showed that the α and ß diversity indices of soil ciliate communities in the Nianchu River Basin varied significantly in spatial distribution, but not in temporal distribution. Mantel test showed that soil water content, total nitrogen and organic matter were significantly correlated with soil ciliates. Soil water content was the main environmental factor driving the spatial distribution of soil ciliates. Co-occurrence network analysis showed that soil ciliate species in the Nianchu River Basin depend on each other in the relationship of solidarity and cooperation or ecological complementarity. Thus maintaining or enhancing the diversity and stability of the community. Community assembly shows that randomness process was an important ecological process driving soil ciliate community construction in the Nianchu River Basin.
Asunto(s)
Cilióforos , Ríos , Suelo , Suelo/química , Suelo/parasitología , Ríos/parasitología , China , Agua/parasitología , Ecosistema , Biodiversidad , TibetRESUMEN
Anthropogenic activities have dramatically altered land use/land cover (LULC), leading to ecosystem service (ES) degradation and further ecological risks. Ecological risks are particularly serious in ecologically fragile regions because trade-offs between economic development and ecological protection are prominent. Thus, ways in which to assess the response of ecological risks to LULC change under each development scenario in ecologically fragile regions remain challenging. In this study, future LUCC and its impact on ESs under four development scenarios in 2040 in western Jilin Province were predicted using a patch-generating land use simulation model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. Ecological risk was assessed based on future LUCC possibilities, and potential ES degradation and potential drivers of ecological risks were explored using a geographic detector. The results showed that the cropland development scenario (CDS) would experience large-scale urbanization and cropland expansion. Carbon storage (CS), habitat quality (HQ), and water purification (WP) degraded the most under the CDS, and grain yield (GY) and water yield (WY) degraded the most under the ecological protection scenario (EPS). The LUCC probability under the CDS (14.37 %) was the highest, while the LUCC probability under the comprehensive development scenario (CPDS) (8.68 %) was the lowest. The risk of WP degradation was greatest under the CDS, but the risk of soil retention (SR) degradation was greatest under the natural development scenario (NDS), EPS, and CPDS. Ecological risk coverage was the largest (98.04 %), and ecological risks were the highest (0.21) under the CDS, while those under the EPS were the opposite. Distance to roads and population density had a higher impact on ecological risks than other drivers. Further attention should be given to the ecological networks and pattern establishment in urbanized regions. This study will contribute to risk prevention and sustainable urban and agricultural development.
RESUMEN
High genetic heterogeneity is an important characteristic of hepatitis C virus (HCV) that contributes to its ability to establish persistent infection. The hypervariable region 1 (HVR1) that includes the first 27 amino acid residues of the E2 envelope glycoprotein is the most variable region within the HCV polyprotein. HVR1 plays a major role in both HCV cell entry and immune evasion, but the respective contribution of specific amino acid residues is still unclear. Our mutagenesis analyses of HCV pseudoparticles and cell culture-derived HCV using the H77 isolate indicate that five residues at positions 14, 15, and 25-27 mediate binding of the E2 protein to the scavenger receptor class B, type I receptor, and any residue herein is indispensable for HCV cell entry. The region spanning positions 16-24 contains the sole neutralizing epitope and is dispensable for HCV entry, but it is involved in heparan binding. More importantly, this region is necessary for the enhancement of HCV entry by high density lipoprotein and interferes with virus neutralization by E2-neutralizing antibodies. Residues at positions 1-13 are also dispensable for HCV entry, but they can affect HCV infectivity by modulating binding of the envelope protein to scavenger receptor class B, type I. Mutations occurring at this site may confer resistance to HVR1 antibodies. These findings further our understanding about the mechanisms of HCV cell entry and the significance of HVR1 variation in HCV immune evasion. They have major implications for the development of HCV entry inhibitors and prophylactic vaccines.
Asunto(s)
Hepacivirus/fisiología , Hepatitis C/inmunología , Evasión Inmune , Proteínas Virales/inmunología , Internalización del Virus , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Antígenos CD36/genética , Antígenos CD36/inmunología , Antígenos CD36/metabolismo , Hepatitis C/genética , Hepatitis C/prevención & control , Humanos , Estructura Terciaria de Proteína , Vacunas contra Hepatitis Viral/genética , Vacunas contra Hepatitis Viral/inmunología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that causes considerable economic losses to the pig industry and significantly threatens public health worldwide. The highly pathogenic S. suis 2, which contains the 89K pathogenicity island (PAI), has caused large-scale outbreaks of infections in humans, resulting in high mortality rates. In this study, we established two loop-mediated isothermal amplification (LAMP)-based assays that can rapidly detect S. suis 2 and the 89K PAI and can be performed simultaneously under the same conditions. Further, based on the findings of these two LAMP assays and using the same set of serially diluted DNA samples, we compared the sensitivities of different LAMP product detection methods, including SYBR green detection, gel electrophoresis, turbidimetry, calcein assays, and hydroxynaphthol blue detection. The results suggest that target genes can be amplified and detected within 48 min under 63°C isothermal conditions. The sensitivity of tests for S. suis 2 detection varies between detection methods and reaction systems, indicating that for each LAMP reaction system, multiple detection methods should be performed to select the optimal one. The sensitivities of the optimized methods (7.16 copies/reaction) in the present study were identical to those of the real-time PCR assay, and the test results for reference strains and clinical samples showed that these LAMP systems have high specificities. Thus, since the LAMP systems established in this study are simple, fast, and sensitive, they may have good clinical potential for detecting the highly pathogenic S. suis 2.
Asunto(s)
Técnicas Bacteriológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Streptococcus suis/aislamiento & purificación , Animales , Humanos , Sensibilidad y Especificidad , Streptococcus suis/clasificación , Streptococcus suis/genéticaRESUMEN
Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.
Asunto(s)
Linfocitos T CD8-positivos , Células Asesinas Naturales , Humanos , Ligandos , Timo , Receptores de Antígenos de Linfocitos T alfa-beta , Inmunoglobulinas , Receptores KIRRESUMEN
Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from the skin secretions of Australian tree frogs. In this work, the interaction of Mac1 with anionic phospholipid bilayers was investigated by NMR, circular dichroism (CD) spectroscopy, neutron reflectometry (NR) and molecular dynamics (MD). In buffer, the peptide is unstructured but in the presence of anionic (DPC/LMPG) micelles or (DMPC/DMPG/DHPC) bicelles adopts a helical structure. Addition of the soluble paramagnetic agent gadolinium (Gd-DTPA) into the Mac1-DPC/LMPG micelle solution showed that the N-terminus is more exposed to the hydrophilic Gd-DTPA than the C-terminus in micelles. 2H and 31P solid-state NMR showed that Mac1 had a greater effect on the anionic lipid (DMPG). A deuterium labeled Mac1 used in NR experiments indicated that the AMP spanned across anionic (PC/PG) bilayers, which was compatible with MD simulations. Simulations also showed that Mac1 orientation remained transmembrane in bilayers and wrapped on the surface of the micelles regardless of the lipid or detergent charge. Thus, the peptide orientation appears to be more susceptible to curvature than charged surface. These results support the formation of transmembrane pores by Mac1 in model bacterial membranes.
RESUMEN
Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.
Asunto(s)
Antiinfecciosos/química , Lipopéptidos/química , Secuencia de Aminoácidos , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Lipopéptidos/metabolismo , Lipopéptidos/farmacología , Liposomas/química , Liposomas/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Nanofibras/química , Conformación Proteica en Hélice alfa , Staphylococcus aureus/efectos de los fármacos , Tensión SuperficialRESUMEN
AIM: To observe the influence of HCV F protein on apoptosis of HepG2 cells, and explore the association between F protein and NF-kappaB signal pathway. METHODS: HCV 1b F gene containing HepG2-F cells and HCV 1b C gene containing HepG2-C cells were treated with 100 IU/mL TNF-alpha, and analyzed by flow cytometry, Western blotting, and dual luciferase reporter assay. Empty plasmid pcDNA3.1(+) containing HepG2-3.1 cells were used as control. RESULTS: (i) With the treatment of TNF-alpha for 18 h, the apoptosis rates (AR) of HepG2-F and HepG2-3.1 cells were 0.41% (+/- 0.11%) and 37.43% (+/- 2.03%) respectively, while that of HepG2-C was 4.07% (+/- 0.18%). At 36 h after TNF-alpha treatment, the AR of HepG2-F and HepG2-3.1 cells were 10.03% (+/- 0.41%) and 44.63% (+/- 3.37%), and that of HepG2-C was 14.95% (+/- 0.85%). (ii) After the treatment of TNF-alpha for 0.5-18 h, the p65 contents in the whole cells of HepG2-F and HepG2-3.1 showed no significant difference (P = 0.34, t = 1.08), while the p65 contents in the nucleus of HepG2-F and HepG2-3.1 cells were 3.8-1.9 times and 1.8-1.0 times higher than that in the non-treated cells (P = 0.013, t = 4.25). (iii) The relative luciferase unit (RLU) of the HepG2 cells, co-transfected with pcDNA3.1-F and pNF-kappaB-luc, and then treated with TNF-alpha (100 IU/mL) for 18 h, showed a pcDNA3.1-F dose-dependent increase. CONCLUSION: HCV F protein can over-activate NF-kappaB signal pathway, which makes HepG2-F cells able to resist TNF-alpha induced apoptosis.
RESUMEN
Hierarchical construction of a highly ordered supramolecular array has been, in general, a challenge due to the complexation of building blocks and the hard-to-control weak interactions. Herein, we present a type of well-ordered nanoribbon, which was self-assembled via shape complimentary and hydrophobic effects from the bowl-shaped supramolecular components, which were synthesized by combining designer terpyridine-based monomers and two different metal ions (Ru2+, Zn2+). Interestingly, switching counter ions or changing monomer concentrations, a transformation between a uniform nanosphere and nanoribbon occurred. This opens a door to fabricate readily tailorable, large-scale, supramacromolecular materials.