Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(16): 2907-2920, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36868854

RESUMEN

General anesthesia shares many similarities with natural sleep in behavior and electroencephalogram (EEG) patterns. The latest evidence suggests that general anesthesia and sleep-wake behavior may share overlapping neural substrates. The GABAergic neurons in the basal forebrain (BF) have recently been demonstrated to play a key role in controlling wakefulness. It was hypothesized that BF GABAergic neurons may participate in the regulation of general anesthesia. Here, using in vivo fiber photometry, we found that the activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia, having obviously decreased during the induction of anesthesia and being gradually restored during the emergence from anesthesia, in Vgat-Cre mice of both sexes. Activation of BF GABAergic neurons with chemogenetic and optogenetic approaches decreased sensitivity to isoflurane, delayed induction, and accelerated emergence from isoflurane anesthesia. Optogenetic activation of BF GABAergic neurons decreased EEG δ power and the burst suppression ratio (BSR) during 0.8% and 1.4% isoflurane anesthesia, respectively. Similar to the effects of activating BF GABAergic cell bodies, photostimulation of BF GABAergic terminals in the thalamic reticular nucleus (TRN) also strongly promoted cortical activation and behavioral emergence from isoflurane anesthesia. Collectively, these results showed that the GABAergic BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthesia via the GABAergic BF-TRN pathway. Our findings may provide a new target for attenuating the depth of anesthesia and accelerating emergence from general anesthesia.SIGNIFICANCE STATEMENT The basal forebrain (BF) is a key brain region controlling sleep-wake behavior. Activation of GABAergic neurons in the BF potently promotes behavioral arousal and cortical activity. Recently, many sleep-wake-related brain structures have been reported to participate in the regulation of general anesthesia. However, it is still unclear what role BF GABAergic neurons play in general anesthesia. In this study, we aim to reveal the role of BF GABAergic neurons in behavioral and cortical emergence from isoflurane anesthesia and elucidate the underlying neural pathways. Understanding the specific role of BF GABAergic neurons in isoflurane anesthesia would improve our understanding of the mechanisms of general anesthesia and may provide a new strategy for accelerating emergence from general anesthesia.


Asunto(s)
Prosencéfalo Basal , Isoflurano , Masculino , Femenino , Ratones , Animales , Isoflurano/farmacología , Prosencéfalo Basal/fisiología , Neuronas GABAérgicas/fisiología , Sueño/fisiología , Electroencefalografía , Anestesia General
2.
J Environ Manage ; 356: 120751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531131

RESUMEN

Cost-effective treatment or even valorization of the bauxite residue (red mud) from the alumina industry is in demand to improve their environmental and economic liabilities. This study proposes a strategy that provides a near-complete conversion of bauxite residue to valuable products. The first step involves dilute acid leaching, which allowed the fractionation of raw residues into (1) an aqueous fraction rich in silica and aluminium and (2) a solid residue rich in iron, titanium and rare earth elements. For the proposed process, 91% of the original silicon, 67% of the aluminium, 78% of the scandium and 69% of the cerium were recovered. The initial cost evaluation suggested that this approach is profitable with a gross margin of 167 $US per tonne. This "Residue2Product" approach should be considered for large-scale practices as one of the most economical and sustainable solutions to this environmental and economic liability for the alumina industry.


Asunto(s)
Óxido de Aluminio , Aluminio , Óxido de Aluminio/química , Hierro , Titanio , Agua
3.
Angew Chem Int Ed Engl ; 63(15): e202319978, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38369652

RESUMEN

Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.

4.
J Am Chem Soc ; 145(17): 9718-9728, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37084330

RESUMEN

Zeolite-supported metal nanocluster catalysts have attracted significant attention due to their broad application in heterogeneously catalyzed reactions. The preparation of highly dispersed metal catalysts commonly involves the use of organic compounds and requires the implementation of complicated procedures, which are neither green nor deployable at the large scale. Herein, we present a novel facile method (vacuum-heating) which employs a specific thermal vacuum processing protocol of catalysts to promote the decomposition of metal precursors. The removal of coordinated H2O via vacuum-heating restricts the formation of intermediates (metal-bound OH species), resulting in catalysts with a uniform, metal nanocluster distribution. The structure of the intermediate was determined by in situ Fourier transform infrared, temperature-programmed decomposition, and X-ray absorption spectroscopy (XAS) measurements. This alternative synthesis method is eco-friendly and cost-effective as the procedure occurs in the absence of organic compounds. It can be widely used for the preparation of catalysts from different metal species (Ni, Fe, Cu, Co, Zn) and precursors and is readily scaled-up.

5.
Epilepsia ; 64(8): 2126-2136, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177976

RESUMEN

OBJECTIVE: Gain of function variants in the sodium-activated potassium channel KCNT1 have been associated with pediatric epilepsy disorders. Here, we systematically examine a spectrum of KCNT1 variants and establish their impact on channel function in multiple cellular systems. METHODS: KCNT1 variants identified from published reports and genetic screening of pediatric epilepsy patients were expressed in Xenopus oocytes and HEK cell lines. Variant impact on current magnitude, current-voltage relationships, and sodium ion modulation were examined. RESULTS: We determined basic properties of KCNT1 in Xenopus oocyte and HEK systems, including the role of extra- and intracellular sodium in regulating KCNT1 activity. The most common six KCNT1 variants demonstrated strong gain of function (GOF) effects on one or more channel properties. Analysis of 36 total variants identified phenotypic heterogeneity but a strong tendency for pathogenic variants to exert GOF effects on channel properties. By controlling intracellular sodium, we demonstrate that multiple pathogenic KCNT1 variants modulate channel voltage dependence by altering the sensitivity to sodium ions. SIGNIFICANCE: This study represents the largest systematic functional examination of KCNT1 variants to date. We both confirm previously reported GOF channel phenotypes and expand the number of variants with in vitro GOF effects. Our data provide further evidence that novel KCNT1 variants identified in epilepsy patients lead to disease through generalizable GOF mechanisms including increases in current magnitude and/or current-voltage relationships.


Asunto(s)
Epilepsia , Mutación con Ganancia de Función , Humanos , Canales de potasio activados por Sodio/genética , Mutación , Epilepsia/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas del Tejido Nervioso/genética
6.
Angew Chem Int Ed Engl ; 62(43): e202311654, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37679304

RESUMEN

Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.

7.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1180-1192, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35983978

RESUMEN

Celastrol is a quinone methide triterpenoid extracted from the root bark of Tripterygium wilfordii Hook F, and it exhibits extensive biological activities such as anti-cancer effects. However, narrow therapeutic window together with undesired side effects limit its clinical application. In this study, we explore celastrol's cardiotoxicity using the methods of histology and cell biology. The results show that celastrol administration dose-dependently induces cardiac dysfunction in mice as manifested by left ventricular dilation, myocardial interstitial fibrosis, and cardiomyocyte hypertrophy. Exposure to celastrol greatly decreases neonatal rat ventricular myocyte (NRVM) viability and promotes its apoptosis. More importantly, we demonstrate that celastrol exerts its pro-apoptotic effects through endoplasmic reticulum (ER) stress and unfolded protein response. Furthermore, siRNA targeting C/EBP homologous protein, a pivotal component of ER stress-mediated apoptosis, effectively prevents the pro-apoptotic effect of celastrol. Taken together, our results demonstrate the potential cardiotoxicity of celastrol and a direct involvement of ER stress in the celastrol-induced apoptosis of NRVMs. Thus, we recommend careful evaluation of celastrol's cardiovascular effects when using it in the clinic.


Asunto(s)
Cardiotoxicidad , Triterpenos , Animales , Apoptosis , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Estrés del Retículo Endoplásmico , Ratones , Triterpenos Pentacíclicos/farmacología , ARN Interferente Pequeño , Ratas , Triterpenos/toxicidad
8.
Angew Chem Int Ed Engl ; 61(28): e202205427, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35499196

RESUMEN

One-step C2 H4 purification from ternary C2 H6 /C2 H4 /C2 H2 mixtures by a single adsorbent is of great industrial significance, but few adsorbents achieve this separation. Herein, we report a robust metal-organic framework (MOF) that possesses methyl-decorated nonpolar pores and shows one-step C2 H4 purification (purity >99.9 %) from binary C2 H6 /C2 H4 mixtures and ternary C2 H6 /C2 H4 /C2 H2 mixtures. The methyl groups in pores provide a suitable pore environment to simultaneously enhance the adsorption capacity for C2 H2 and C2 H6 compared to C2 H4 . Simulations revealed the multiple interactions between C2 H6 or C2 H2 molecules and the pore wall, while the interactions with C2 H4 molecules are weak and also unfavorable due to the repulsion from methyl groups in pores. The MOF displays high C2 H6 and C2 H2 uptakes and benchmark C2 H6 /C2 H4 selectivity (2.2), surpassing all of the reported MOFs for one-step C2 H4 purification from ternary C2 H6 /C2 H4 /C2 H2 mixtures.

9.
Angew Chem Int Ed Engl ; 61(48): e202213015, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36202779

RESUMEN

Adsorption technology based on ethane-selective materials is a promising alternative to energy-intensive cryogenic distillation for separating ethane (C2 H6 ) and ethylene (C2 H4 ). We employed a pore engineering strategy to tune the pore environment of a metal-organic framework (MOF) through organic functional groups and boosted the C2 H6 /C2 H4 separation of the MOF. Introduction of amino (-NH2 ) groups into Tb-MOF-76 not only decreased pore sizes but also facilitated multiple guest-host interactions in confined pores. The NH2 -functionalized Tb-MOF-76(NH2 ) has increased C2 H6 and C2 H4 uptakes and C2 H6 /C2 H4 selectivity. The results of experimental and simulated transient breakthroughs reveal that Tb-MOF-76(NH2 ) has significantly improved one-step separation performance for C2 H6 /C2 H4 mixtures with a high C2 H4 (>99.95 %) productivity of 17.66 L kg-1 compared to 7.53 L kg-1 by Tb-MOF-76, resulting from the suitable pore confinement and accessible -NH2 groups on pore surfaces.

10.
Angew Chem Int Ed Engl ; 61(4): e202112880, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34694675

RESUMEN

The melting behaviour of metal-organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through melt-quenching of the cobalt-based zeolitic imidazolate framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co-Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device assembly.

11.
J Am Chem Soc ; 143(25): 9507-9514, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34143615

RESUMEN

Strontium cobaltite-based perovskites (SrCoO3-δ) have been widely studied as a promising cathode for the next-generation solid-oxide fuel cell (SOFC). Here, we found a balance between oxygen vacancy (VO) formation and its migration in designing SrCoO3-δ-based materials by using two activity descriptors, i.e., radius and electronegativity. The ORR activity of these types of perovskites is found to strongly rely on the two proposed descriptors, and Nb- or Ta-doped SrCoO3-δ locates in the promising zone as predicted with a moderate value of both VO formation energy and ion migration barrier. Then Sc-Ta co-doped SrCoO3-δ (SSTC) and Sc-Nb co-doped SrCoO3-δ (SSNC) are screened out to be the best among 91 bimetal-doped SrCoO3-δ perovskites. Further experiments have been carried out to synthesize the co-doped SSTC and prove ultralow area-specific resistance values (0.071, 0.198, and 0.701 Ω·cm2 at 550, 500, and 450 °C, respectively), which is only one-third of that of benchmark materials for the SOFC cathodes. Our results open a novel pathway in designing SOFC cathodes with an optimal performance.

12.
Small ; 17(20): e2100121, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33792164

RESUMEN

Water electrolysis, which is a promising high-purity H2 production method, lacks pH-universality; moreover, highly efficient electrocatalysts that accelerate the sluggish anodic oxygen evolution reaction (OER) are scarce. Geometric structure engineering and electronic structure modulation can be efficiently used to improve catalyst activity. Herein, a facile Ar plasma treatment method to fabricate a composite of uniformly dispersed iridium-copper oxide nanoclusters supported on defective graphene (DG) to form IrCuOx @DG, is described. Acid leaching can be used to remove Cu atoms and generate porous IrOx nanoclusters supported on DG (P-IrOx @DG), which can serve as efficient and robust pH-universal OER electrocatalysts. Moreover, when paired with commercial 20 wt% Pt/C, P-IrOx @DG can deliver current densities of 350.0, 317.6, and 47.1 mA cm-2 at a cell voltage of 2.2 V for overall water splitting in 0.5 m sulfuric acid, 1.0 m potassium hydroxide, and 1.0 m phosphate buffer solution, respectively, outperforming commercial IrO2 and nonporous IrOx nanoclusters supported on DG (O-IrOx @DG). Probing experiment, X-ray absorption spectroscopy, and theoretical calculation results demonstrate that Cu removal can successfully create P-IrOx nanoclusters and introduce unsaturated Ir atoms. The optimum binding energies of oxygenated intermediate species on unsaturated Ir sites and ultrafine IrOx nanoclusters contribute to the high intrinsic OER catalytic activity of P-IrOx @DG.

13.
Inorg Chem ; 60(14): 10698-10706, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34232028

RESUMEN

The new indium-based organic framework {(Me2NH2)[In(BDPO)]·DMF·2H2O}n (1) was successfully constructed by using the oxalamide group modified ligand N,N'-bis(isophthalic acid)oxalamide (H4BDPO). This framework presents a 2-fold interpenetrating structural characteristic, and the unique polar pore environment leads to a high capture ability for CO2, C2Hn and CH3OH and good separation ability for CO2 and C2Hn over CH4 as well as for CH3OH over C2H5OH, which was further verified by an ideal adsorbed solution theory (IAST) calculation. Theoretical simulations pointed out the possible adsorption sites of different adsorbed gases in 1. In addition, the excellent chemical stability and strong luminescence of 1 give it an effective selective detection ability for 2,6-dichloro-4-nitroaniline (DCN) in water with a low detection limit of 3.85 ppm, and the detection mechanism is discussed in detail.

14.
Chemistry ; 26(69): 16402-16407, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32672357

RESUMEN

To develop efficient adsorbent materials for storage and separation of C2 H2 , an unprecedented supercage MOF, [Me2 NH2 ]⋅[Zn3 (ALP)(TDC)2.5 ]⋅3.5DMF⋅2 H2 O (1) was constructed through medicinal molecule allopurinol (ALP) and S-containing 2,5-thiophenedicarboxylic acid (H2 TDC). 1 contains a novel linear trinuclear cluster that is composed by ALP and carboxylates and forms a final uncommon 5-connected yfy topological framework. The framework possesses three types of interlinked cages decorated by rich functional sites, and reveals not only high adsorption capacity for C2 H2 but also excellent selective separation for C2 H2 /CO2 and C2 H2 /CH4 at 298 K. Dynamic breakthrough experiments on C2 H2 /CO2 (1:1) mixture and C2 H2 /CH4 (1:1) mixture also demonstrated the potential of the material to separate C2 H2 from CO2 or CH4 mixtures. Molecular simulations were also studied to identify the different CO2 - and C2 H2 - binding sites in 1, such as carboxylate groups, S atoms and carbonyl groups.

15.
Inorg Chem ; 59(20): 15302-15311, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33002353

RESUMEN

The reaction of In3+ ions with 2,5-di(2H-tetrazol-5-yl) terephthalic acid (H4dtztp) affords a 3D indium-organic framework, [In(dtztp)0.5(OH)(H2O)]·H2O (1) with a (3,6)-connected net. 1 shows good thermal (300 °C) and chemical stabilities (various organic solvents and acidic/basic solutions) and excellent water tolerance (7 days at room temperature or in boiling water). The acetylene (C2H2) sorption behavior of 1 indicates significant separation selectivity over CH4, as confirmed by breakthrough experiments on the realistic gas mixtures. Meanwhile, the MOF with the Lewis and Brønsted acidic bifunctional catalytic sites catalyzes the CO2 conversion with different epoxides with high yields. The fluorescent properties reveal the efficient probing performance of 1 for nitrofurantoin (NFT) and metronidazole (MDZ) in water with a low detection limit (ppm).

16.
Angew Chem Int Ed Engl ; 59(34): 14664-14670, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32495475

RESUMEN

The oxygen vacancies of defective iron-cobalt oxide (FeCoOx -Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co-S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx -Vo-S to exhibit much superior OER activity. FeCoOx -Vo-S exhibits a mass activity of 2440.0 A g-1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2 . The Tafel slope is as low as 21.0 mV dec-1 , indicative of its excellent charge transfer rate. When FeCoOx -Vo-S (anode catalyst) is paired with the defective CoP3 /Ni2 P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm-2 and 406.0 mA cm-2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.

17.
Phys Chem Chem Phys ; 21(3): 1110-1116, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30601494

RESUMEN

N2 fixation is one of the most challenging tasks in chemistry. Recently, tremendous efforts have been devoted to transition metal-based materials. However, metal-free catalysts for N2 conversion have been rarely explored. Here, by using density functional theory, we predict, for the first time that a single B-atom decorated BN edge (B@BN) can act as a metal-free catalyst for the conversion of an N2 molecule to NH3 under ambient conditions. N2 fixation on the B@BN edge exhibits an extremely low overpotential of only 0.13 V through a distal mechanism. Moreover, fast removal of the produced NH3 molecule is observed with an uphill Gibbs free energy change of only 0.35 V, which is lower than those of ever-reported electrocatalysts such as Mo-doped BN and 2D Mxene. Our findings highlight a novel single atom metal-free catalyst for N2 fixation, providing a cost-efficient process for sustainable NH3 production.

18.
Angew Chem Int Ed Engl ; 58(38): 13565-13572, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31328904

RESUMEN

Metal-organic framework (MOFs) two-dimensional (2D) nanosheets have many coordinatively unsaturated metal sites that act as active centres for catalysis. To date, limited numbers of 2D MOFs nanosheets can be obtained through top-down or bottom-up synthesis strategies. Herein, we report a 2D oxide sacrifice approach (2dOSA) to facilely synthesize ultrathin MOF-74 and BTC MOF nanosheets with a flexible combination of metal sites, which cannot be obtained through the delamination of their bulk counterparts (top-down) or the conventional solvothermal method (bottom-up). The ultrathin iron-cobalt MOF-74 nanosheets prepared are only 2.6 nm thick. The sample enriched with surface coordinatively unsaturated metal sites, exhibits a significantly higher oxygen evolution reaction reactivity than bulk FeCo MOF-74 particles and the state-of-the-art MOF catalyst. It is believed that this 2dOSA could provide a new and simple way to synthesize various ultrathin MOF nanosheets for wide applications.

19.
Chemistry ; 24(4): 865-871, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29105158

RESUMEN

A new three-dimensional (3D) framework, [Ni(btzip)(H2 btzip)]⋅2 DMF⋅2 H2 O (1) (H2 btzip=4,6-bis(triazol-1-yl)isophthalic acid) as an acidic heterogeneous catalyst was constructed by the reaction of nickel wire and a triazolyl-carboxyl linker. Framework 1 possesses intersected 2D channels decorated by free COOH groups and uncoordinated triazolyl N atoms, leading to not only high CO2 and C2 H6 adsorption capacity but also significant selective capture for CO2 and C2 H6 over CH4 and CO in 273-333 K. Moreover, 1 reveals chemical stability toward water. Grand Canonical Monte Carlo simulations confirmed the multiple CO2 - and C2 H6 -philic sites. As a result of the presence of accessible Brønsted acidic COOH groups in the channels, the activated framework demonstrates highly efficient catalytic activity in the cycloaddition reaction of CO2 with propylene oxide/4-chloromethyl-1,3-dioxolan-2-one/3-butoxy-1,2-epoxypropane into cyclic carbonates.

20.
Inorg Chem ; 57(19): 12417-12423, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30226057

RESUMEN

To comparably analyze the influence of a porous environment on the gas adsorption in MOFs, based on an imidazole-decorated MOF, {[Zn(imtp)]·DMA·1.5H2O} n (1-im, H2imtp = 2-(imidazol-1-yl) terephthalic acid), an analogue MOF, {[Zn(tztp)]·DMA} n (1-tz, H2tztp = 2-(1 H-1,2,4-triazol-1-yl) terephthalic acid) has been synthesized by replacing imidazole with triazole motifs. The two MOFs are isostructural frameworks containing 1D channels; however, they possess different porous wall environments. The open nitrogen-decorated channels in 1-tz lead to significantly enhanced C2H6 (76.5 cm3 g-1) and C2H4 (73.1 cm3 g-1) uptakes at 298 K and 1 atm, which are 5 times of the adsorption amounts of C2H6 and C2H4 in 1-im that is the absence of exposed N atoms in the channels. Furthermore, the activated 1-tz also reveals higher adsorption selectivities for C2H6 and C2H4 over CH4. The different sorption properties were further uncovered by theoretical simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA