RESUMEN
OBJECTIVE: Scutellaria baicalensis (SB) and Polygonatum Rhizoma (PR), two traditional Chinese medicines, are both known to suppress cancer. However, the mechanism and effect of combined treatment of them for lung cancer are rarely known. Investigating the combined effect of SB and PR (hereafter referred to as SP) in potential mechanism of lung cancer is required. This study was to evaluate the inhibitory effects of SP on A549 cell growth and to explore the underlying molecular mechanisms. METHODS: According to the theory of Chinese medicine and network pharmacology, in the in vivo experiment, a mouse model of carcinoma in situ was constructed, and lung carcinoma in situ tissues were collected for proteomics analysis, hematoxylin-eosin staining, and CK19 immunohistochemistry. In the in vitro experiment, lung cancer A549 cells at logarithmic growth stage were taken, and the inhibitory effect of SP on the proliferation of A549 cells was detected by CCK8 method. The expression of PON3 was detected by quantitative polymerase chain reaction and western blot. In addition, the effect of SP on the induction of apoptosis in A549 cells and the changes of membrane potential and reactive oxygen species (ROS) content were detected by flow cytometry. The changes of PON3 content in endoplasmic reticulum (ER) are observed by laser confocal microscopy, whereas the effects of SP on the expression of apoptosis-related proteins and ER stress-related proteins in A549 cells were examined by western blot. RESULT: By searching the Traditional Chinese Medicines of Systems Pharmacology (TCMSP) (https://www.tcmspe.com/index.php) database and SymMap database, the respective target genes of PR and SB were mapped into protein network interactions, and using Venn diagrams to show 38 genes in common between PR and SB and lung cancer, SP was found to play a role in the treatment of lung cancer. In vivo experiments showed that in a lung carcinoma in situ model, lung tumor tissue was significantly lower in the SP group compared with the control group, and PON3 was shown to be downregulated by lung tissue proteomics analysis. The combination of SP was able to inhibit the proliferation of A549 cells in a concentration-dependent manner (p < .0001). The expression levels of apoptosis-related proteins and ER stress proteins were significantly increased and the expression levels of PON3 and anti-apoptosis-related proteins were decreased in A549 cells. At the same time, knockdown of PON3 could inhibit tumor cell proliferation (p < .0001). The combination of different concentrations of SP significantly induced apoptosis in A549 cells (p < .05; p < .0001), increased ROS content (p < .01), and damaged mitochondrial membrane potential of A549 cells (p < .05; p < .0001), and significantly increased the expression levels of apoptosis-related proteins and ER stress proteins in lung cancer A549 cells. CONCLUSION: SP inhibits proliferation of lung cancer A549 cells by downregulating PON3-induced apoptosis in the mitochondrial and ER pathways.
Asunto(s)
Carcinoma in Situ , Neoplasias Pulmonares , Polygonatum , Animales , Ratones , Humanos , Células A549 , Polygonatum/metabolismo , Scutellaria baicalensis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Abajo , Neoplasias Pulmonares/patología , Apoptosis , Proliferación Celular , Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Línea Celular TumoralRESUMEN
Reasonable equipment layout is essential for creating a healthy and safe environment, especially in a three-level biosafety laboratory with high potential risk factors of infection. Since 2019, COVID-19, an emerging infection has swept the world and caused severe losses. Biosafety laboratories are mandatory sites for detecting high-risk viruses, so related research is urgently needed to prevent further laboratory-acquired infections of operators. This study investigated the effects of obstacles on exposure infection of staff in a biosafety laboratory with related experimental equipment. The numerical simulation results are highly verified by the measured results. The results indicate that although the equipment layout does not affect the bioaerosol removal time, nearly 17% of the pollutant particles in the actual laboratory cannot be discharged effectively compared with the ideal situation. These particles lingered in the lower space under the influence of vortex, which would increase the respiratory risk of operators. In addition, after the experiment a large part of bioaerosol particles would be captured by equipment and floor, and the deposition rate per unit area is 0.45%/m2 and 0.8%/m2, respectively. Although the results show that the equipment layout could reduce the pollution on the floor, the disinfection is still an important link, especially on the surfaces of equipment. Meanwhile, the result also indicates that the action should be light and slow when operating in BSL-3 laboratory, so as to avoid the secondary suspension pollution of bioaerosol particles on the equipment surface and floor.
RESUMEN
Laboratory-acquired infections (LAIs) are defined as infections of laboratory staff by exposure to pathogenic microorganisms during an experimental procedure. For a biosafety level-3 (BSL-3) laboratory with a high potential of exposure, reducing risks and threats relevant to LAIs has become a critical concern, especially after the recent outbreak of Novel Coronavirus causing COVID-19 in Wuhan, China. This study aimed to investigate the spatial-temporal characteristics of bioaerosol dispersion and deposition of two kinds of bioaerosols (Serratia marcescens and phage ΦX174). A combination of laboratory experiment and numerical simulation was adopted to explore bioaerosol removal. Three-dimensional concentration iso-surface mapping in conjunction with flow field analysis was employed to elucidate bioaerosol migration and deposition behavior. The total deposition number and unit area deposition ratio were calculated for different surfaces. The results indicate that bioaerosol concentration remains stable for up to 400 s after release, and that almost 70% of all bioaerosol particles become deposited on the surfaces of walls and equipment. Vortex flow regions and high-concentration regions were determined, and the most severely contaminated surfaces and locations were identified. Our results could provide the scientific basis for controlling the time interval between different experiments and also provide guidelines for a laboratory disinfection routine. Furthermore, future work regarding laboratory layout optimization and high efficiency air distribution for bioaerosol removal in a BSL-3 laboratory should be emphasized.
RESUMEN
Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.
RESUMEN
As the first trastuzumab biosimilar introduced in China, there are few studies on the clinical application of HLX02, especially in combination with other antitumour drugs, for the treatment of HER-2-positive breast cancer. A multicenter retrospective study was conducted in three hospitals in China to select patients with HER-2-positive breast cancer who met the inclusion criteria and received HLX02 or the reference trastuzumab. Ninety-six patients diagnosed with HER-2-positive breast cancer were finally included and divided into two groups and treated with HLX02 or the reference trastuzumab. The results showed no significant differences in pathological complete response (70.0% vs. 76.2%; P=1.000) and overall response rate (91.9% vs. 94.9%; P=0.673) between the two groups. Kaplan-Meier survival curves also showed no significant difference in time-to-event variables between the two groups (log-rank P=0.48). Safety was also comparable in both groups. In conclusion, among patients with HER2-positive breast cancer, HLX02 demonstrated equivalent efficacy and safety to its reference trastuzumab, both in neoadjuvant chemotherapy and in postoperative adjuvant therapy. However, clinical equivalence studies between HLX02 and the original trastuzumab drug remain challenging. Future research should focus on the clinical exchange between biosimilars and original drugs, as well as the extrapolation of biosimilars' indications.