Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(7): e2305494, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37797191

RESUMEN

Lithium-sulfur (Li-S) batteries hold the superiority of eminent theoretical energy density (2600 Wh kg-1 ). However, the ponderous sulfur reduction reaction and the issue of polysulfide shuttling pose significant obstacles to achieving the practical wide-temperature operation of Li-S batteries. Herein, a covalent organic nanosheet-wrapped carbon nanotubes (denoted CON/CNT) composite is synthesized as an electrocatalyst for wide-temperature Li-S batteries. The design incorporates the CON skeleton, which contains imide and triazine functional units capable of chemically adsorbing polysulfides, and the underlaid CNTs facilitate the conversion of captured polysulfides enabled by enhanced conductivity. The electrocatalytic behavior and chemical interplay between polysulfides and the CON/CNT interlayer are elucidated by in situ X-ray diffraction detections and theoretical calculations. Resultantly, the CON/CNT-modified cells demonstrate upgraded performances, including wide-temperature operation ranging from 0 to 65 °C, high-rate performance (625 mAh g-1 at 5.0 C), exceptional high-rate cyclability (1000 cycles at 5.0 C), and stable operation under high sulfur loading (4.0 mg cm-2 ) and limited electrolyte (5 µL mgs -1 ). These findings might guide the development of advanced Li-S batteries.

2.
Nano Lett ; 23(13): 6156-6163, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37379517

RESUMEN

Zinc (Zn) metal anodes suffer from the dendrite growth and hydrogen evolution reaction (HER) in classical aqueous electrolytes, which severely limit their lifespan. We propose a rational design of AgxZny protective coatings with selective binding to Zn2+ against H+ to simultaneously regulate the Zn growth pattern and the HER kinetics. We further demonstrate that by tuning the composition of the AgxZny coating the Zn deposition behavior can be readily tuned from the conventional plating/stripping (on Zn-AgZn3 coating) to alloying/dealloying (on Ag-AgZn coating), resulting in precise control of the Zn growth pattern. Moreover, the synergy of Ag and Zn further suppresses the competitive HER. As a result, the modified Zn anodes possess a significantly enhanced lifespan. This work provides a new strategy for enhancing the stability of Zn and potentially other metal anodes by precisely manipulating the binding strength of protons and metal charge carriers in aqueous batteries.

3.
Nano Lett ; 23(18): 8585-8592, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37669044

RESUMEN

Single-atom nanozymes (SAzymes) open new possibilities for the development of artificial enzymes that have catalytic activity comparable to that of natural peroxidase (POD). So far, most efforts have focused on the structural modulation of the Fe-N4 moiety to mimic the metalloprotein heme center. However, non-heme-iron POD with much higher activity, for example, HppE, has not been mimicked successfully due to its structural complexity. Herein, carbon dots (CDs)-supported SAzymes with twisted, nonplanar Fe-O3N2 active sites, highly similar to the non-heme iron center of HppE, was synthesized by exploiting disordered and subnanoscale domains in CDs. The Fe-CDs exhibit an excellent POD activity of 750 units/mg, surpassing the values of conventional SAzymes with planar Fe-N4. We further fabricated an activatable Fe-CDs-based therapeutic agent with near-infrared enhanced POD activity, a photothermal effect, and tumor-targeting ability. Our results represent a big step in the design of high-performance SAzymes and provide guidance for future applications for synergistic tumor therapy.

4.
Nano Lett ; 23(7): 2905-2914, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36961203

RESUMEN

Strain engineering is an attractive strategy for improving the intrinsic catalytic performance of heterogeneous catalysts. Manipulating strain on the short-range atomic scale to the local structure of the catalytic sites is still challenging. Herein, we successfully achieved atomic strain modulation on ultrathin layered vanadium oxide nanoribbons by an ingenious intercalation chemistry method. When trace sodium cations were introduced between the V2O5 layers (Na+-V2O5), the V-O bonds were stretched by the atomically strained vanadium sites, redistributing the local charges. The Na+-V2O5 demonstrated excellent photooxidation performance, which was approximately 12 and 14 times higher than that of pristine V2O5 and VO2, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the atomically strained Na+-V2O5 had a high surficial charge density, improving the activation of oxygen molecules and contributing to the excellent photocatalytic property. This work provides a new approach for the rational design of strain-equipped catalysts for selective photooxidation reactions.

5.
Angew Chem Int Ed Engl ; 63(4): e202316550, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38038407

RESUMEN

Single-atom alloys (SAAs), combining the advantages of single-atom and nanoparticles (NPs), play an extremely significant role in the field of heterogeneous catalysis. Nevertheless, understanding the catalytic mechanism of SAAs in catalysis reactions remains a challenge compared with single atoms and NPs. Herein, ruthenium-nickel SAAs (RuNiSAAs ) synthesized by embedding atomically dispersed Ru in Ni NPs are anchored on two-dimensional Ti3 C2 Tx MXene. The RuNiSAA-3 -Ti3 C2 Tx catalysts exhibit unprecedented activity for hydrogen evolution from ammonia borane (AB, NH3 BH3 ) hydrolysis with a mass-specific activity (rmass ) value of 333 L min-1 gRu -1 . Theoretical calculations reveal that the anchoring of SAAs on Ti3 C2 Tx optimizes the dissociation of AB and H2 O as well as the binding ability of H* intermediates during AB hydrolysis due to the d-band structural modulation caused by the alloying effect and metal-supports interactions (MSI) compared with single atoms and NPs. This work provides useful design principles for developing and optimizing efficient hydrogen-related catalysts and demonstrates the advantages of SAAs over NPs and single atoms in energy catalysis.

6.
Angew Chem Int Ed Engl ; : e202405637, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825570

RESUMEN

Directly coupling N2 and CO2 to synthesize urea by photocatalysis paves a sustainable route for urea synthesis, but its performance is limited by the competition of photogenerated electrons between N2 and CO2, as well as the underutilized photogenerated holes. Herein, we report an efficient urea synthesis process involving photogenerated electrons and holes in respectively converting CO2 and N2 over a redox heterojunction consisting of WO3 and Ni single-atom-decorated CdS (Ni1-CdS/WO3). For the photocatalytic urea synthesis from N2 and CO2 in pure water, Ni1-CdS/WO3 attained a urea yield rate of 78 µM·h-1 and an apparent quantum yield of 0.15 % at 385 nm, which ranked among the best photocatalytic urea synthesis performance reported. Mechanistic studies reveal that the N2 was converted into NO species by ⋅OH radicals generated from photogenerated holes over the WO3 component, meanwhile, the CO2 was transformed into *CO species over the Ni site by photogenerated electrons. The generated NO and *CO species were further coupled to form *OCNO intermediate, then gradually transformed into urea. This work emphasizes the importance of reasonably utilizing photogenerated holes in photocatalytic reduction reactions.

7.
Angew Chem Int Ed Engl ; 63(24): e202402684, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597346

RESUMEN

Electrocatalytic urea synthesis under ambient conditions offers a promising alternative strategy to the traditional energy-intensive urea industry protocol. Limited by the electrostatic interaction, the reduction reaction of anions at the cathode in the electrocatalytic system is not easily achievable. Here, we propose a novel strategy to overcome electrostatic interaction via pulsed electroreduction. We found that the reconstruction-resistant CuSiOx nanotube, with abundant atomic Cu-O-Si interfacial sites, exhibits ultrastability in the electrosynthesis of urea from nitrate and CO2. Under a pulsed potential approach with optimal operating conditions, the Cu-O-Si interfaces achieve a superior urea production rate (1606.1 µg h-1 mgcat. -1) with high selectivity (79.01 %) and stability (the Faradaic efficiency is retained at 80 % even after 80 h of testing), outperforming most reported electrocatalytic synthesis urea catalysts. We believe our strategy will incite further investigation into pulsed electroreduction increasing substrate transport, which may guide the design of ambient urea electrosynthesis and other energy conversion systems.

8.
Angew Chem Int Ed Engl ; : e202404968, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830833

RESUMEN

The heteroatom substitution is considered as a promising strategy for boosting the redox kinetics of transition metal compounds in hybrid supercapacitors (HSCs) although the dissimilar metal identification and essential mechanism that dominate the kinetics remain unclear. It is presented that d-p orbital hybridization between the metal and electrolyte ions can be utilized as a descriptor for understanding the redox kinetics. Herein, a series of Co, Fe and Cu heteroatoms are respectively introduced into Ni3Se4 cathodes, among them, only the moderate Co-substituted Ni3Se4 can hold the optimal d-p orbital hybridization resulted from the formed more unoccupied antibonding states π*. It inevitably enhances the interfacial charge transfer and ensures the balanced OH- adsorption-desorption to accelerate the redox kinetics validated by the lowest reaction barrier (0.59 eV, matching well with the theoretical calculations. Coupling with the lower OH- diffusion energy barrier, the prepared cathode delivers ultrahigh rate capability (~68.7% capacity retention even the current density increases by 200 times), and an assembled HSC also presents high energy/power density. This work establishes the principles for determining heteroatoms and deciphers the underlying effects of the heteroatom substitution on improving redox kinetics and the rate performance of battery-type electrodes from a novel perspective of orbital-scale manipulation.

9.
Angew Chem Int Ed Engl ; 63(21): e202400625, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38556897

RESUMEN

Single-metal atomic sites and vacancies can accelerate the transfer of photogenerated electrons and enhance photocatalytic performance in photocatalysis. In this study, a series of nickel hydroxide nanoboards (Ni(OH)x NBs) with different loadings of single-atomic Ru sites (w-SA-Ru/Ni(OH)x) were synthesized via a photoreduction strategy. In such catalysts, single-atomic Ru sites are anchored to the vacancies surrounding the pits. Notably, the SA-Ru/Ni(OH)x with 0.60 wt % Ru loading (0.60-SA-Ru/Ni(OH)x) exhibits the highest catalytic performance (27.6 mmol g-1 h-1) during the photocatalytic reduction of CO2 (CO2RR). Either superfluous (0.64 wt %, 18.9 mmol g-1 h-1; 3.35 wt %, 9.4 mmol-1 h-1) or scarce (0.06 wt %, 15.8 mmol g-1 h-1; 0.29 wt %, 21.95 mmol g-1 h-1; 0.58 wt %, 23.4 mmol g-1 h-1) of Ru sites have negative effect on its catalytic properties. Density functional theory (DFT) calculations combined with experimental results revealed that CO2 can be adsorbed in the pits; single-atomic Ru sites can help with the conversion of as-adsorbed CO2 and lower the energy of *COOH formation accelerating the reaction; the excessive single-atomic Ru sites occupy vacancies that retard the completion of CO2RR.

10.
Angew Chem Int Ed Engl ; : e202408193, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802317

RESUMEN

Hydrolysis of ammonia borane (NH3BH3, AB) involves multiple undefined steps and complex adsorption and activation, so single or dual sites are not enough for the rapidity of the multiple processes. Designing multi-site catalysts is necessary to enhance the catalytic performance of AB hydrolysis reactions but revealing the matching reaction mechanisms of AB hydrolysis is a great challenge. In this work, we propose to construct RuPt-Ti multi-site catalysts with the metal-support synergy effect to clarify the multi-site tandem activation mechanism of AB hydrolysis. Experimental and theoretical studies reveal that the multi-site tandem mode can respectively promote the activation of NH3BH3 and H2O molecules on the Ru and Pt sites as well as facilitate the fast transfer of *H and the desorption of H2 on Ti sites at the same time. RuPt-Ti multi-site catalysts exhibit the highest turnover frequency (TOF) of 1293 min-1 for AB hydrolysis reaction, outperforming the single-site Ru, dual-site RuPt and Ru-Ti catalysts. This study proposes a multi-site tandem concept for accelerating the dehydrogenation of hydrogen storage material, aiming to contribute to the development of cleaner, low-carbon, and high-performance hydrogen production systems.

11.
Angew Chem Int Ed Engl ; 63(12): e202319618, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38286759

RESUMEN

Efficient dual-single-atom catalysts are crucial for enhancing atomic efficiency and promoting the commercialization of fuel cells, but addressing the sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline media and the facile dual-single-atom site generation remains formidable challenges. Here, we break the local symmetry of ultra-small ruthenium (Ru) nanoparticles by embedding cobalt (Co) single atoms, which results in the release of Ru single atoms from Ru nanoparticles on reduced graphene oxide (Co1 Ru1,n /rGO). In situ operando spectroscopy and theoretical calculations reveal that the oxygen-affine Co atom disrupts the symmetry of ultra-small Ru nanoparticles, resulting in parasitic Ru and Co dual-single-atom within Ru nanoparticles. The interaction between Ru single atoms and nanoparticles forms effective active centers. The parasitism of Co atoms modulates the adsorption of OH intermediates on Ru active sites, accelerating HOR kinetics through faster formation of *H2 O. As anticipated, Co1 Ru1,n /rGO exhibits ultrahigh mass activity (7.68 A mgRu -1 ) at 50 mV and exchange current density (0.68 mA cm-2 ), which are 6 and 7 times higher than those of Ru/rGO, respectively. Notably, it also displays exceptional durability surpassing that of commercial Pt catalysts. This investigation provides valuable insights into hybrid multi-single-atom and metal nanoparticle catalysis.

12.
Angew Chem Int Ed Engl ; 63(24): e202401943, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594205

RESUMEN

Electrochemical C-N coupling reaction based on carbon dioxide and nitrate have been emerged as a new "green synthetic strategy" for the synthesis of urea, but the catalytic efficiency is seriously restricted by the inherent scaling relations of adsorption energies of the active sites, the improvement of catalytic activity is frequently accompanied by the decrease in selectivity. Herein, a doping engineering strategy was proposed to break the scaling relationship of intermediate binding and minimize the kinetic barrier of C-N coupling. A thus designed SrCo0.39Ru0.61O3-δ catalyst achieves a urea yield rate of 1522 µg h-1 mgcat. -1 and faradic efficiency of 34.1 % at -0.7 V versus reversible hydrogen electrode. A series of characterizations revealed that Co doping not only induces lattice distortion but also creates rich oxygen vacancies (OV) in the SrRuO3. The oxygen vacancies weaken the adsorption of *CO and *NH2 intermediates on the Co and Ru sites respectively, and the strain effects over the Co-Ru dual sites promoting the occurrence of C-N coupling of the two monomers instead of selective hydrogenating to form by-products. This work presents an insight into molecular coupling reactions towards urea synthesis via the doping engineering on SrRuO3.

13.
Inorg Chem ; 62(30): 11990-12000, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37462358

RESUMEN

Electrochemical nitrogen reduction reaction (NRR) is a promising method for ammonia synthesis under ambient conditions. However, the NRR performance is limited to an extremely strong N≡N bond in N2 and the competing hydrogen evolution reaction. Introducing oxygen vacancies (OVs) has been considered as a forceful means to accelerate the sluggish NRR reaction kinetics. Herein, we reported the design of Fe-doped NiMoO4 catalysts for NRR. Fe doping can increase the amount of OVs in the catalyst and contribute to lattice strain enhancement, thereby leading to the improvement of the electron transport rate and catalytic active for NRR. In 0.1 M Na2SO4 solution, the 5% Fe-NiMoO4 catalyst achieves a NH3 yield rate of 15.36 µg h-1 mgcat.-1 and a Faradaic efficiency of 26.85% under -0.5 V versus RHE. Furthermore, the 5% Fe-NiMoO4 catalyst exhibits excellent stability (up to 13 h) during the reaction.

14.
Angew Chem Int Ed Engl ; 62(3): e202212653, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399050

RESUMEN

Nano and single-atom catalysis open new possibilities of producing green hydrogen (H2 ) by water electrolysis. However, for the hydrogen evolution reaction (HER) which occurs at a characteristic reaction rate proportional to the potential, the fast generation of H2 nanobubbles at atomic-scale interfaces often leads to the blockage of active sites. Herein, a nanoscale grade-separation strategy is proposed to tackle mass-transport problem by utilizing ordered three-dimensional (3d) interconnected sub-5 nm pores. The results reveal that 3d criss-crossing mesopores with grade separation allow efficient diffusion of H2 bubbles along the interconnected channels. After the support of ultrafine ruthenium (Ru), the 3d mesopores are on a superior level to two-dimensional system at maximizing the catalyst performance and the obtained Ru catalyst outperforms most of the other HER catalysts. This work provides a potential route to fine-tuning few-nanometer mass transport during water electrolysis.

15.
Angew Chem Int Ed Engl ; 62(50): e202315621, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37902435

RESUMEN

Electrochemical CO2 reduction reaction (CO2 RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2 H4 ). However, achieving high C2 H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2 RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2 H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2 H4 with a current density of 497.2 mA cm-2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4 . The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2 RR. Furthermore, theoretical calculations demonstrate that the Cuδ+ /Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2 H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.

16.
Angew Chem Int Ed Engl ; 62(5): e202212335, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36380642

RESUMEN

Fine-tuning single-atom catalysts (SACs) to surpass their activity limit remains challenging at their atomic scale. Herein, we exploit p-type semiconducting character of SACs having a metal center coordinated to nitrogen donors (MeNx ) and rectify their local charge density by an n-type semiconductor support. With iron phthalocyanine (FePc) as a model SAC, introducing an n-type gallium monosulfide that features a low work function generates a space-charged region across the junction interface, and causes distortion of the FeN4 moiety and spin-state transition in the FeII center. This catalyst shows an over two-fold higher specific oxygen-reduction activity than that of pristine FePc. We further employ three other n-type metal chalcogenides of varying work function as supports, and discover a linear correlation between the activities of the supported FeN4 and the rectification degrees, which clearly indicates that SACs can be continuously tuned by this rectification strategy.

17.
J Am Chem Soc ; 144(41): 18995-19007, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36214519

RESUMEN

The development of rechargeable Na-S batteries is very promising, thanks to their considerably high energy density, abundance of elements, and low costs and yet faces the issues of sluggish redox kinetics of S species and the polysulfide shuttle effect as well as Na dendrite growth. Following the theory-guided prediction, the rare-earth metal yttrium (Y)-N4 unit has been screened as a favorable Janus site for the chemical affinity of polysulfides and their electrocatalytic conversion, as well as reversible uniform Na deposition. To this end, we adopt a metal-organic framework (MOF) to prepare a single-atom hybrid with Y single atoms being incorporated into the nitrogen-doped rhombododecahedron carbon host (Y SAs/NC), which features favorable Janus properties of sodiophilicity and sulfiphilicity and thus presents highly desired electrochemical performance when used as a host of the sodium anode and the sulfur cathode of a Na-S full cell. Impressively, the Na-S full cell is capable of delivering a high capacity of 822 mAh g-1 and shows superdurable cyclability (97.5% capacity retention over 1000 cycles at a high current density of 5 A g-1). The proof-of-concept three-dimensional (3D) printed batteries and the Na-S pouch cell validate the potential practical applications of such Na-S batteries, shedding light on the development of promising Na-S full cells for future application in energy storage or power batteries.

18.
Angew Chem Int Ed Engl ; 61(32): e202203522, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35452184

RESUMEN

Charge redistribution plays a prominent role in interpreting the intrinsic electrocatalytic mechanism. Establishing a quantitative relationship between the local charges and electrochemical performance can fundamentally update the design philosophies beyond conventional methods. We describe exertion of an external electric field in the cobalt phthalocyanine (CoPc)/MoS2 heterojunction to finely manipulate intermolecular charge transfer. The injected charges (e- ) from CoPc to MoS2 migrate to natural S vacancies and enhance Mo-H bonding. Moreover, the band gap of MoS2 and CoPc can be readily tuned by the electric field, verifying band engineering at the heterointerface. In situ photoluminescence spectra and gate-dependent electrochemical measurement reveal a linear correlation between the charge accumulation and hydrogen evolution reaction (HER) activity. This approach provides a new strategy for the design of catalysts, enabling precise regulation of the electronic configuration to improve catalytic activity.

19.
Angew Chem Int Ed Engl ; 61(4): e202114450, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34767294

RESUMEN

The exploitation of highly efficient carbon dioxide reduction (CO2 RR) electrocatalyst for methane (CH4 ) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N-heterocyclic carbene (NHC)-ligated copper single atom site (Cu SAS) embedded in metal-organic framework is reported (2Bn-Cu@UiO-67), which can achieve an outstanding Faradaic efficiency (FE) of 81 % for the CO2 reduction to CH4 at -1.5 V vs. RHE with a current density of 420 mA cm-2 . The CH4 FE of our catalyst remains above 70 % within a wide potential range and achieves an unprecedented turnover frequency (TOF) of 16.3 s-1 . The σ donation of NHC enriches the surface electron density of Cu SAS and promotes the preferential adsorption of CHO* intermediates. The porosity of the catalyst facilitates the diffusion of CO2 to 2Bn-Cu, significantly increasing the availability of each catalytic center.

20.
Angew Chem Int Ed Engl ; 57(2): 496-500, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29119647

RESUMEN

Proton adsorption on metallic catalysts is a prerequisite for efficient hydrogen evolution reaction (HER). However, tuning proton adsorption without perturbing metallicity remains a challenge. A Schottky catalyst based on metal-semiconductor junction principles is presented. With metallic MoB, the introduction of n-type semiconductive g-C3 N4 induces a vigorous charge transfer across the MoB/g-C3 N4 Schottky junction, and increases the local electron density in MoB surface, confirmed by multiple spectroscopic techniques. This Schottky catalyst exhibits a superior HER activity with a low Tafel slope of 46 mV dec-1 and a high exchange current density of 17 µA cm-2 , which is far better than that of pristine MoB. First-principle calculations reveal that the Schottky contact dramatically lowers the kinetic barriers of both proton adsorption and reduction coordinates, therefore benefiting surface hydrogen generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA