Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Microbiol ; 18(1): 288-301, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26286355

RESUMEN

Understanding the ecology of coniferous forests is very important because these environments represent globally largest carbon sinks. Metatranscriptomics, microbial community and enzyme analyses were combined to describe the detailed role of microbial taxa in the functioning of the Picea abies-dominated coniferous forest soil in two contrasting seasons. These seasons were the summer, representing the peak of plant photosynthetic activity, and late winter, after an extended period with no photosynthate input. The results show that microbial communities were characterized by a high activity of fungi especially in litter where their contribution to microbial transcription was over 50%. Differences in abundance between summer and winter were recorded for 26-33% of bacterial genera and < 15% of fungal genera, but the transcript profiles of fungi, archaea and most bacterial phyla were significantly different among seasons. Further, the seasonal differences were larger in soil than in litter. Most importantly, fungal contribution to total microbial transcription in soil decreased from 33% in summer to 16% in winter. In particular, the activity of the abundant ectomycorrhizal fungi was reduced in winter, which indicates that plant photosynthetic production was likely one of the major drivers of changes in the functioning of microbial communities in this coniferous forest.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Microbiota/genética , Pinaceae/microbiología , Microbiología del Suelo , Archaea/genética , Bacterias/genética , Ecosistema , Bosques , Hongos/genética , Perfilación de la Expresión Génica , Micorrizas , Fotosíntesis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Estaciones del Año , Suelo , Transcripción Genética/genética , Árboles/microbiología
2.
Sci Rep ; 14(1): 14513, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914681

RESUMEN

Having been successfully bred in semi-intensive and intensive aquaculture systems, oval squids of the Sepioteuthis lessoniana species complex are emerging as promising candidates for research and industry. Nevertheless, information about pathogens and diseases that may affect squid aquaculture remains sparse. In this study, we identify new parasitic copepod species that causes squid mortality and decreases squid hatching rates, and we also offer a solution to eliminate the pathogen during incubation of squid eggs. The newly discovered copepod Ikanecator primus gen. et sp. nov. was identified on oval squid eggs for the first time using both morphological and molecular diagnostic markers. In the genomes of the copepod and associated microbiome, we identified multiple genes for enzymes involved in cephalopod eggshell degradation in genomes of the copepod and associated microbiome. Furthermore, we conducted experiments to assess efficacy of peracetic acid in inhibiting the I. primus gen. et sp. nov. both in vitro and in vivo using immersion treatment. We established that a 2-min exposure to a concentration of 250 µl/L of peracetic acid containing product (PAA-product; 35 mg/L PAA and 15 mg/L H2O2) inhibited the development of nauplii in vitro. All parasites exposed to a concentration of 500 µl/L of PAA-product (70 mg/L PAA and 30 mg/L H2O2) were eliminated within two minutes. On top of this, the immersion treatment with 500 µl/L of PAA-product (70 mg/L PAA and 30 mg/L H2O2) improved survival of squid embryos and increased size of squid hatchlings compared with control and the immersion treatment with 125 µl/L of PAA-product (17.5 mg/L PAA and 7.5 mg/L H2O2) and the immersion treatment with 250 µl/L of PAA-product (35 mg/L PAA and 15 mg/L H2O2). These findings suggest that PAA holds a great potential as inhibitor and controller of parasitic copepod infections and for overall health management in cephalopod culture.


Asunto(s)
Copépodos , Decapodiformes , Ácido Peracético , Animales , Decapodiformes/parasitología , Copépodos/efectos de los fármacos , Ácido Peracético/farmacología , Óvulo/efectos de los fármacos , Acuicultura
3.
Vet Parasitol ; 332: 110302, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288614

RESUMEN

The cuttlefish Sepia pharaonis species complex is emerging as a promising set of organisms for research in neuroscience, the behavioral sciences, and commercial aquaculture. At the same time, information about pathogens and diseases that could affect cuttlefish cultivation in intensive aquaculture settings remains limited. Our study has identified two species of parasite, the protozoan Liburna oophaga sp. nov. and the metazoan Ikanecator primus, that co-infect cuttlefish eggs, increasing mortality and reducing hatching rates. L. oophaga sp. nov. is reported here for the first time to enhance mortality during the incubation period by inducing deformity in cuttlefish eggs. We investigated the application of peracetic acid to parasite elimination during cuttlefish egg incubation. When cuttlefish eggs were treated with a peracetic acid containing product (PAA-product); 35 mg/L PAA + 15 mg/L H2O2, L. oophaga on the surfaces of the eggs were eliminated within 10 min. PAA-product; 70 mg/L PAA + 30 mg/L H2O2 was required to achieve the same effect for I. primus. Immersion treatment with PAA-product at 70 mg/L PAA + 30 mg/L H2O2 reduced parasitic load and improved survival of cuttlefish embryos and hatchling size, demonstrating that PAA product can inhibit and control parasitic co-infections in cephalopod culture.

4.
Integr Comp Biol ; 63(6): 1226-1239, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37370232

RESUMEN

Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.


Asunto(s)
Cefalópodos , Animales , Genómica/métodos , Genoma , Perfilación de la Expresión Génica , Encéfalo
5.
Microbiome ; 10(1): 78, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624491

RESUMEN

BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Isópteros , Animales , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Suelo
6.
Front Microbiol ; 12: 668644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177846

RESUMEN

The bacterial genus Sodalis is represented by insect endosymbionts as well as free-living species. While the former have been studied frequently, the distribution of the latter is not yet clear. Here, we present a description of a free-living strain, Sodalis ligni sp. nov., originating from decomposing deadwood. The favored occurrence of S. ligni in deadwood is confirmed by both 16S rRNA gene distribution and metagenome data. Pangenome analysis of available Sodalis genomes shows at least three groups within the Sodalis genus: deadwood-associated strains, tsetse fly endosymbionts and endosymbionts of other insects. This differentiation is consistent in terms of the gene frequency level, genome similarity and carbohydrate-active enzyme composition of the genomes. Deadwood-associated strains contain genes for active decomposition of biopolymers of plant and fungal origin and can utilize more diverse carbon sources than their symbiotic relatives. Deadwood-associated strains, but not other Sodalis strains, have the genetic potential to fix N2, and the corresponding genes are expressed in deadwood. Nitrogenase genes are located within the genomes of Sodalis, including S. ligni, at multiple loci represented by more gene variants. We show decomposing wood to be a previously undescribed habitat of the genus Sodalis that appears to show striking ecological divergence.

8.
Sci Data ; 7(1): 228, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661237

RESUMEN

Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.


Asunto(s)
Código de Barras del ADN Taxonómico , Hongos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Micobioma , Microbiología del Suelo , Plantas/microbiología
9.
Nat Commun ; 11(1): 5125, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046698

RESUMEN

Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.


Asunto(s)
Hongos/genética , Genoma Fúngico , Micorrizas/genética , Simbiosis , Ecosistema , Evolución Molecular , Proteínas Fúngicas/genética , Hongos/clasificación , Hongos/fisiología , Micorrizas/clasificación , Micorrizas/fisiología , Filogenia , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología
10.
Nat Commun ; 10(1): 5142, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723140

RESUMEN

The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa.


Asunto(s)
Clima , Hongos/fisiología , Internacionalidad , Biodiversidad , Filogeografía , Lluvia , Especificidad de la Especie , Temperatura
11.
Nat Ecol Evol ; 2(12): 1956-1965, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420746

RESUMEN

Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Périgord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico , Rasgos de la Historia de Vida , Micorrizas/genética , Simbiosis , Ascomicetos/fisiología , ADN de Hongos/análisis , Micorrizas/fisiología , Filogenia , Análisis de Secuencia de ADN
12.
Microbiome ; 5(1): 122, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28923122

RESUMEN

BACKGROUND: Evergreen coniferous forests contain high stocks of organic matter. Significant carbon transformations occur in litter and soil of these ecosystems, making them important for the global carbon cycle. Due to seasonal allocation of photosynthates to roots, carbon availability changes seasonally in the topsoil. The aim of this paper was to describe the seasonal differences in C source utilization and the involvement of various members of soil microbiome in this process. RESULTS: Here, we show that microorganisms in topsoil encode a diverse set of carbohydrate-active enzymes, including glycoside hydrolases and auxiliary enzymes. While the transcription of genes encoding enzymes degrading reserve compounds, such as starch or trehalose, was high in soil in winter, summer was characterized by high transcription of ligninolytic and cellulolytic enzymes produced mainly by fungi. Fungi strongly dominated the transcription in litter and an equal contribution of bacteria and fungi was found in soil. The turnover of fungal biomass appeared to be faster in summer than in winter, due to high activity of enzymes targeting its degradation, indicating fast growth in both litter and soil. In each enzyme family, hundreds to thousands of genes were typically transcribed simultaneously. CONCLUSIONS: Seasonal differences in the transcription of glycoside hydrolases and auxiliary enzyme genes are more pronounced in soil than in litter. Our results suggest that mainly fungi are involved in decomposition of recalcitrant biopolymers in summer, while bacteria replace them in this role in winter. Transcripts of genes encoding enzymes targeting plant biomass biopolymers, reserve compounds and fungal cell walls were especially abundant in the coniferous forest topsoil.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ciclo del Carbono , Carbono/metabolismo , Bosques , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos/genética , Biomasa , Hongos/genética , Microbiota/genética , Estaciones del Año , Transcriptoma
13.
Mol Ecol Resour ; 16(2): 388-401, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26287723

RESUMEN

Although the commonly used internal transcribed spacer region of rDNA (ITS) is well suited for taxonomic identification of fungi, the information on the relative abundance of taxa and diversity is negatively affected by the multicopy nature of rDNA and the existence of ITS paralogues. Moreover, due to high variability, ITS sequences cannot be used for phylogenetic analyses of unrelated taxa. The part of single-copy gene encoding the second largest subunit of RNA polymerase II (rpb2) was thus compared with first spacer of ITS as an alternative marker for the analysis of fungal communities in spruce forest topsoil, and their applicability was tested on a comprehensive mock community. In soil, rpb2 exhibited broad taxonomic coverage of the entire fungal tree of life including basal fungal lineages. The gene exhibited sufficient variation for the use in phylogenetic analyses and taxonomic assignments, although it amplifies also paralogues. The fungal taxon spectra obtained with rbp2 region and ITS1 corresponded, but sequence abundance differed widely, especially in the basal lineages. The proportions of OTU counts and read counts of major fungal groups were close to the reality when rpb2 was used as a molecular marker while they were strongly biased towards the Basidiomycota when using the ITS primers ITS1/ITS4. Although the taxonomic placement of rbp2 sequences is currently more difficult than that of the ITS sequences, its discriminative power, quantitative representation of community composition and suitability for phylogenetic analyses represent significant advantages.


Asunto(s)
Biota , Hongos/clasificación , Hongos/genética , Variación Genética , Metagenómica/métodos , ARN Polimerasa II/genética , Microbiología del Suelo , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Bosques , Hongos/enzimología , Filogenia , Picea/crecimiento & desarrollo , Subunidades de Proteína/genética , Análisis de Secuencia de ADN
14.
FEMS Microbiol Ecol ; 80(3): 735-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22379979

RESUMEN

Organic matter decomposition in the globally widespread coniferous forests has an important role in the carbon cycle, and cellulose decomposition is especially important in this respect because cellulose is the most abundant polysaccharide in plant litter. Cellulose decomposition was 10 times faster in the fungi-dominated litter of Picea abies forest than in the bacteria-dominated soil. In the soil, the added (13)C-labelled cellulose was the main source of microbial respiration and was preferentially accumulated in the fungal biomass and cellulose induced fungal proliferation. In contrast, in the litter, bacterial biomass showed higher labelling after (13)C-cellulose addition and bacterial biomass increased. While 80% of the total community was represented by 104-106 bacterial and 33-59 fungal operational taxonomic units (OTUs), 80% of the cellulolytic communities of bacteria and fungi were only composed of 8-18 highly abundant OTUs. Both the total and (13)C-labelled communities differed substantially between the litter and soil. Cellulolytic bacteria in the acidic topsoil included Betaproteobacteria, Bacteroidetes and Acidobacteria, whereas these typically found in neutral soils were absent. Most fungal cellulose decomposers belonged to Ascomycota; cellulolytic Basidiomycota were mainly represented by the yeasts Trichosporon and Cryptococcus. Several bacteria and fungi demonstrated here to derive their carbon from cellulose were previously not recognized as cellulolytic.


Asunto(s)
Bacterias/metabolismo , Celulosa/metabolismo , Hongos/metabolismo , Picea/microbiología , Microbiología del Suelo , Bacterias/genética , Bacterias/aislamiento & purificación , Biomasa , Isótopos de Carbono/análisis , ADN Bacteriano/aislamiento & purificación , ADN de Hongos/aislamiento & purificación , Hongos/genética , Hongos/aislamiento & purificación , Genes Fúngicos , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , Suelo , Árboles/microbiología
15.
ISME J ; 6(2): 248-58, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21776033

RESUMEN

Soils of coniferous forest ecosystems are important for the global carbon cycle, and the identification of active microbial decomposers is essential for understanding organic matter transformation in these ecosystems. By the independent analysis of DNA and RNA, whole communities of bacteria and fungi and its active members were compared in topsoil of a Picea abies forest during a period of organic matter decomposition. Fungi quantitatively dominate the microbial community in the litter horizon, while the organic horizon shows comparable amount of fungal and bacterial biomasses. Active microbial populations obtained by RNA analysis exhibit similar diversity as DNA-derived populations, but significantly differ in the composition of microbial taxa. Several highly active taxa, especially fungal ones, show low abundance or even absence in the DNA pool. Bacteria and especially fungi are often distinctly associated with a particular soil horizon. Fungal communities are less even than bacterial ones and show higher relative abundances of dominant species. While dominant bacterial species are distributed across the studied ecosystem, distribution of dominant fungi is often spatially restricted as they are only recovered at some locations. The sequences of cbhI gene encoding for cellobiohydrolase (exocellulase), an essential enzyme for cellulose decomposition, were compared in soil metagenome and metatranscriptome and assigned to their producers. Litter horizon exhibits higher diversity and higher proportion of expressed sequences than organic horizon. Cellulose decomposition is mediated by highly diverse fungal populations largely distinct between soil horizons. The results indicate that low-abundance species make an important contribution to decomposition processes in soils.


Asunto(s)
Bacterias/clasificación , Ecosistema , Hongos/clasificación , Microbiología del Suelo , Árboles/microbiología , Bacterias/enzimología , Bacterias/genética , Biodiversidad , Celulosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Hongos/enzimología , Hongos/genética , Metagenoma , Filogenia , Picea/fisiología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA