RESUMEN
Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.
Asunto(s)
Estudio de Asociación del Genoma Completo , Fenotipo , Estrés Salino , Solanum , Solanum/genética , Solanum/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiologíaRESUMEN
Satellite remote sensing has great potential to deliver on the promise of a data-driven agricultural revolution, with emerging space-based platforms providing spatiotemporal insights into precision-level attributes such as crop water use, vegetation health and condition and crop response to management practices. Using a harmonized collection of high-resolution Planet CubeSat, Sentinel-2, Landsat-8 and additional coarser resolution imagery from MODIS and VIIRS, we exploit a multi-satellite data fusion and machine learning approach to deliver a radiometrically calibrated and gap-filled time-series of daily leaf area index (LAI) at an unprecedented spatial resolution of 3 m. The insights available from such high-resolution CubeSat-based LAI data are demonstrated through tracking the growth cycle of a maize crop and identifying observable within-field spatial and temporal variations across key phenological stages. Daily LAI retrievals peaked at the tasseling stage, demonstrating their value for fertilizer and irrigation scheduling. An evaluation of satellite-based retrievals against field-measured LAI data collected from both rain-fed and irrigated fields shows high correlation and captures the spatiotemporal development of intra- and inter-field variations. Novel agricultural insights related to individual vegetative and reproductive growth stages were obtained, showcasing the capacity for new high-resolution CubeSat platforms to deliver actionable intelligence for precision agricultural and related applications.
Asunto(s)
Agricultura , Hojas de la Planta , Fertilizantes , Lluvia , Zea maysRESUMEN
Earth observation has traditionally required a compromise in data collection. That is, one could sense the Earth with high spatial resolution occasionally; or with lower spatial fidelity regularly. For many applications, both frequency and detail are required. Precision agriculture is one such example, with sub-10 m spatial, and daily or sub-daily retrieval representing a key goal. Towards this objective, we produced the first cloud-free 3 m daily evaporation product ever retrieved from space, leveraging recently launched nano-satellite constellations to showcase this emerging potential. Focusing on three agricultural fields located in Nebraska, USA, high-resolution crop water use estimates are delivered via CubeSat-based evaporation modeling. Results indicate good model agreement (r2 of 0.86-0.89; mean absolute error between 0.06 and 0.08 mm/h) when evaluated against corrected flux tower data. CubeSat technologies are revolutionizing Earth observation, delivering novel insights and new agricultural informatics that will enhance food and water security efforts, and enable rapid and informed in-field decision making.
RESUMEN
Biomass and yield are key variables for assessing the production and performance of agricultural systems. Modeling and predicting the biomass and yield of individual plants at the farm scale represents a major challenge in precision agriculture, particularly when salinity and other abiotic stresses may play a role. Here, we evaluate a diversity panel of the wild tomato species (Solanum pimpinellifolium) through both field and unmanned aerial vehicle (UAV)-based phenotyping of 600 control and 600 salt-treated plants. The study objective was to predict fresh shoot mass, tomato fruit numbers, and yield mass at harvest based on a range of variables derived from the UAV imagery. UAV-based red-green-blue (RGB) imageries collected 1, 2, 4, 6, 7, and 8 weeks before harvest were also used to determine if prediction accuracies varied between control and salt-treated plants. Multispectral UAV-based imagery was also collected 1 and 2 weeks prior to harvest to further explore predictive insights. In order to estimate the end of season biomass and yield, a random forest machine learning approach was implemented using UAV-imagery-derived predictors as input variables. Shape features derived from the UAV, such as plant area, border length, width, and length, were found to have the highest importance in the predictions, followed by vegetation indices and the entropy texture measure. The multispectral UAV imagery collected 2 weeks prior to harvest produced the highest explained variances for fresh shoot mass (87.95%), fruit numbers (63.88%), and yield mass per plant (66.51%). The RGB UAV imagery produced very similar results to those of the multispectral UAV dataset, with the explained variance reducing as a function of increasing time to harvest. The results showed that predicting the yield of salt-stressed plants produced higher accuracies when the models excluded control plants, whereas predicting the yield of control plants was not affected by the inclusion of salt-stressed plants within the models. This research demonstrates that it is possible to predict the average biomass and yield up to 8 weeks prior to harvest within 4.23% of field-based measurements and up to 4 weeks prior to harvest at the individual plant level. Results from this work may be useful in providing guidance for yield forecasting of healthy and salt-stressed tomato plants, which in turn may inform growing practices, logistical planning, and sales operations.
RESUMEN
With salt stress presenting a major threat to global food production, attention has turned to the identification and breeding of crop cultivars with improved salt tolerance. For instance, some accessions of wild species with higher salt tolerance than commercial varieties are being investigated for their potential to expand food production into marginal areas or to use brackish waters for irrigation. However, assessment of individual plant responses to salt stress in field trials is time-consuming, limiting, for example, longitudinal assessment of large numbers of plants. Developments in Unmanned Aerial Vehicle (UAV) sensing technologies provide a means for extensive, repeated and consistent phenotyping and have significant advantages over standard approaches. In this study, 199 accessions of the wild tomato species, Solanum pimpinellifolium, were evaluated through a field assessment of 600 control and 600 salt-treated plants. UAV imagery was used to: (1) delineate tomato plants from a time-series of eight RGB and two multi-spectral datasets, using an automated object-based image analysis approach; (2) assess four traits, i.e., plant area, growth rates, condition and Plant Projective Cover (PPC) over the growing season; and (3) use the mapped traits to identify the best-performing accessions in terms of yield and salt tolerance. For the first five campaigns, >99% of all tomato plants were automatically detected. The omission rate increased to 2-5% for the last three campaigns because of the presence of dead and senescent plants. Salt-treated plants exhibited a significantly smaller plant area (average control and salt-treated plant areas of 0.55 and 0.29 m2, respectively), maximum growth rate (daily maximum growth rate of control and salt-treated plant of 0.034 and 0.013 m2, respectively) and PPC (5-16% difference) relative to control plants. Using mapped plant condition, area, growth rate and PPC, we show that it was possible to identify eight out of the top 10 highest yielding accessions and that only five accessions produced high yield under both treatments. Apart from showcasing multi-temporal UAV-based phenotyping capabilities for the assessment of plant performance, this research has implications for agronomic studies of plant salt tolerance and for optimizing agricultural production under saline conditions.