Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 13: 812136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295290

RESUMEN

The human microbiome has been implicated in affecting health outcomes in premature infants, but the ecological processes governing early life microbiome assembly remain poorly understood. Here, we investigated microbial community assembly and dynamics in extremely low birth weight infants (ELBWI) over the first 2 weeks of life. We profiled the gut, oral cavity and skin microbiomes over time using 16S rRNA gene amplicon sequencing and evaluated the ecological forces shaping these microbiomes. Though microbiomes at all three body sites were characterized by compositional instability over time and had low body-site specificity (PERMANOVA, r 2 = 0.09, p = 0.001), they could nonetheless be clustered into four discrete community states. Despite the volatility of these communities, deterministic assembly processes were detectable in this period of initial microbial colonization. To further explore these deterministic dynamics, we developed a probabilistic approach in which we modeled microbiome state transitions in each ELBWI as a Markov process, or a "memoryless" shift, from one community state to another. This analysis revealed that microbiomes from different body sites had distinctive dynamics as well as characteristic equilibrium frequencies. Time-resolved microbiome sampling of premature infants may help to refine and inform clinical practices. Additionally, this work provides an analysis framework for microbial community dynamics based on Markov modeling that can facilitate new insights, not only into neonatal microbiomes but also other human-associated or environmental microbiomes.

2.
Plants (Basel) ; 10(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34834737

RESUMEN

The olive tree of Vouves in Crete, is considered the oldest producing olive tree in the world with an estimated age exceeding 4000 years. In the present study, we sequenced two samples (from the bottom and the top of the tree) to elucidate the genetic relation of this ancient tree with other olive cvs as well as to gain some insights about its origin. Our results showed that both samples have different genetic origins, proving that this ancient tree has been grafted at least one time. On the basis of whole genome sequences the sample from the top of the Vouves tree showed relation of the same order than half-siblings to one accession corresponding to the present-day Greek cv 'Mastoidis'. Nevertheless, in the framework of a microsatellite analysis it was found to cluster with the 'Mastoidis' samples. The Vouves rootstock (bottom sample) showed a clear grouping with the oleaster samples in a similar way to that of 'Megaritiki' Greek cv although it does not show any signal of introgression from them. The genomic analyses did not show a strong relation of this sample with the present-day Greek cvs analyzed in this study so it cannot be proved that it has been used as a source for cultivated olive tree populations represented by available genome sequences. Nevertheless, on the basis of microsatellite analyses, the Vouves rootstock showed affinity with two present-day Greek cvs, one "ancient" rootstock from continental Greece as well as monumental trees from Cyprus. The analysis of the impact of the variants in the gene space revealed an enrichment of genes associated to pathways related with carbohydrate and amino acid metabolism. This is in agreement with what has been found before in the sweep regions related with the process of domestication. The absence of oleaster gene flow, its old age and its variant profile, similar to other cultivated populations, makes it an excellent reference point for domestication studies.

3.
ISME J ; 14(12): 3038-3053, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32770119

RESUMEN

Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of elevated atmospheric CO2, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and archaea (AOA), comammox (CMX) Nitrospira, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier community composition were remarkably resistant to individual and interactive effects of elevated CO2 and temperature. During drought however, process rates were increased or at least maintained. At the same time, the abundance of active AOB increased probably due to higher NH4+ availability. Both, AOA and comammox Nitrospira decreased in response to drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings suggest that warming and elevated CO2 have only minor effects on nitrifier communities and soil biogeochemical variables in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N cycling.


Asunto(s)
Dióxido de Carbono , Suelo , Amoníaco , Archaea/genética , Dióxido de Carbono/análisis , Sequías , Nitrificación , Oxidación-Reducción , Microbiología del Suelo , Temperatura
4.
Front Plant Sci ; 10: 1313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708944

RESUMEN

Recent evidence for intimate relationship of plants with their microbiota shows that plants host individual and diverse microbial communities that are essential for their survival. Understanding their relatedness using genome-based and high-throughput techniques remains a hot topic in microbiome research. Molecular analysis of the plant holobiont necessitates the application of specific sampling and preparatory steps that also consider sources of unwanted information, such as soil, co-amplified plant organelles, human DNA, and other contaminations. Here, we review state-of-the-art and present practical guidelines regarding experimental and computational aspects to be considered in molecular plant-microbiome studies. We discuss sequencing and "omics" techniques with a focus on the requirements needed to adapt these methods to individual research approaches. The choice of primers and sequence databases is of utmost importance for amplicon sequencing, while the assembly and binning of shotgun metagenomic sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to overcome the limitation of genome database resources and for covering large eukaryotic genomes such as fungi. In transcriptomics, it is necessary to account for the separation of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of the protein abundances within a plant tissue which requires the knowledge of complete and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a powerful tool to detect and quantify small molecules and molecular changes at the plant-bacteria interface if the necessary requirements with regard to (secondary) metabolite databases are considered. We highlight data integration and complementarity which should help to widen our understanding of the interactions among individual players of the plant holobiont in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA