Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(5): 101856, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337800

RESUMEN

Sulfation pattern and molecular weight (MW) play a key role in the biological actions of sulfated glycans. Besides anticoagulant effects, certain sulfated glycans can also exhibit anti-SARS-CoV-2 properties. To develop a more selective antiviral carbohydrate, an efficient strategy to separate these two actions is required. In this work, low MW fractions derived from the red alga Botryocladia occidentalis sulfated galactan (BoSG) were generated, structurally characterized, and tested for activity against SARS-CoV-2 and blood coagulation. The lowest MW fraction was found to be primarily composed of octasaccharides of monosulfated monosaccharides. Unlike heparin or native BoSG, we found that hydrolyzed BoSG products had weak anticoagulant activities as seen by aPTT and inhibitory assays using purified cofactors. In contrast, lower MW BoSG-derivatives retained anti-SARS-CoV-2 activity using SARS-CoV-2 spike (S)-protein pseudotyped lentivirus vector in HEK-293T-hACE2 cells monitored by GFP. Surface plasmon resonance confirmed that longer chains are necessary for BoSG to interact with coagulation cofactors but is not required for interactions with certain S-protein variants. We observed distinct affinities of BoSG derivatives for the S-proteins of different SARS-CoV-2 strains, including WT, N501Y (Alpha), K417T/E484K/N501Y (Gamma), and L542R (Delta) mutants, and stronger affinity for the N501Y-containing variants. Docking of the four possible monosulfated BoSG disaccharides in interactions with the N501Y mutant S-protein predicted potential binding poses of the BoSG constructs and favorable binding in close proximity to the 501Y residue. Our results demonstrate that depolymerization and fractionation of BoSG are an effective strategy to segregate its anticoagulant property from its anti-SARS-CoV-2 action.


Asunto(s)
Anticoagulantes , Antivirales , Galactanos , Rhodophyta , SARS-CoV-2 , Anticoagulantes/química , Anticoagulantes/farmacología , Antivirales/química , Antivirales/farmacología , COVID-19 , Galactanos/química , Galactanos/farmacología , Células HEK293 , Humanos , Rhodophyta/química , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Sulfatos/química
2.
Angew Chem Int Ed Engl ; 60(31): 17123-17130, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34105220

RESUMEN

Werner's Complex, as a cationic coordination complex (CCC), has hitherto unappreciated biological properties derived from its binding affinity to highly anionic biomolecules such as glycosaminoglycans (GAGs) and nucleic acids. Competitive inhibitor and spectroscopic assays confirm the high affinity to GAGs heparin, heparan sulfate (HS), and its pentasaccharide mimetic Fondaparinux (FPX). Functional consequences of this affinity include inhibition of FPX cleavage by bacterial heparinase and mammalian heparanase enzymes with inhibition of cellular invasion and migration. Werner's Complex is a very efficient condensing agent for DNA and tRNA. In proof-of-principle for translational implications, it is demonstrated to display antiviral activity against human cytomegalovirus (HCMV) at micromolar concentrations with promising selectivity. Exploitation of non-covalent hydrogen-bonding and electrostatic interactions has motivated the unprecedented discovery of these properties, opening new avenues of research for this iconic compound.


Asunto(s)
Antivirales/farmacología , Complejos de Coordinación/farmacología , Citomegalovirus/efectos de los fármacos , Fondaparinux/antagonistas & inhibidores , Glicosaminoglicanos/farmacología , Antivirales/química , Complejos de Coordinación/química , Glicosaminoglicanos/química , Humanos , Pruebas de Sensibilidad Microbiana
3.
Sci Rep ; 13(1): 4804, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959228

RESUMEN

Great interest exists towards the discovery and development of broad-spectrum antivirals. This occurs due to the frequent emergence of new viruses which can also eventually lead to pandemics. A reasonable and efficient strategy to develop new broad-spectrum antivirals relies on targeting a common molecular player of various viruses. Heparan sulfate is a sulfated glycosaminoglycan present on the surface of cells which plays a key role as co-receptor in many virus infections. In previous work, marine sulfated glycans (MSGs) were identified as having antiviral activities. Their mechanism of action relies primarily on competitive inhibition of virion binding to heparan sulfate, preventing virus attachment to the cell surface prior to entry. In the current work we used pseudotyped lentivirus particles to investigate in a comparative fashion the inhibitory properties of five structurally defined MSGs against SARS-CoV-1, SARS-CoV-2, MERS-CoV, and influenza A virus (IAV). MSGs include the disaccharide-repeating sulfated galactan from the red alga Botryocladia occidentalis, the tetrasaccharide-repeating sulfated fucans from the sea urchin Lytechinus variegatus and from the sea cucumber Isostichopus badionotus, and the two marine fucosylated chondroitin sulfates from the sea cucumbers I. badionotus and Pentacta pygmaea. Results indicate specificity of action against SARS-CoV-1 and SARS-CoV-2. Curiously, the MSGs showed decreased inhibitory potencies against MERS-CoV and negligible action against IAV. Among the five MSGs, the two sulfated fucans here studied deserve further attention since they have the lowest anticoagulant effects but still present potent and selective antiviral properties.


Asunto(s)
COVID-19 , Pepinos de Mar , Animales , Humanos , Sulfatos/química , Anticoagulantes/farmacología , Antivirales/farmacología , SARS-CoV-2 , Polisacáridos/farmacología , Polisacáridos/química , Heparitina Sulfato
4.
J Inorg Biochem ; 245: 112254, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37182504

RESUMEN

The biological activity of the 6+ Co containing Werner's Complex has been described and mechanistic considerations suggest that the highly anionic glycosaminoglycans (heparan sulfate, HS, GAGs) are implicated in this activity [Paiva et al. 2021]. To examine in detail the molecular basis of Werner's Complex biological properties we have examined a selection of simple mononuclear Co3+ compounds for their interactions with HS and Fondaparinux (FPX). FPX is a highly sulfated synthetic pentasaccharide used as a model HS substrate [Mangrum et al. 2014, Peterson et al. 2017]. The Co complexes were chosen to be formally substitution-inert and/or have the potential for covalent binding to the biomolecule. Using both indirect competitive inhibition assays and direct mass spectrometric assays, formally substitution-inert complexes bound to FPX with protection from multiple sulfate loss in the gas phase through metalloshielding. Covalent binding of Co-Cl complexes as in [CoCl(NH3)5]2+ and cis-[CoCl2(en)2]+ was confirmed by mass spectrometry. Interestingly, the former complex was shown to be an effective inhibitor of bacterial heparinase enzyme activity and to inhibit heparanase-dependent cellular invasion through the extracellular matrix (ECM). Pursuing the theme of metalloglycomics, we have observed the hitherto unappreciated biological activity of the simple [CoCl(NH3)5]2+ compound, a staple of most inorganic chemistry lab curricula.


Asunto(s)
Cobalto , Glicosaminoglicanos , Cobalto/metabolismo , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología , Matriz Extracelular/metabolismo , Fondaparinux
5.
Antiviral Res ; 190: 105077, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33864843

RESUMEN

Broad-spectrum antivirals are more needed than ever to provide treatment options for novel emerging viruses and for viruses that lack therapeutic options or have developed resistance. A large number of viruses rely on charge-dependent non-specific interactions with heparan sulfate (HS), a highly sulfated glycosaminoglycan (GAG), for attachment to cell surfaces to initiate cell entry. As such, inhibitors targeting virion-HS interactions have potential to have broad-spectrum antiviral activity. Previous research has explored organic and inorganic small molecules, peptides, and GAG mimetics to disrupt virion-HS interactions. Here we report antiviral activities against both enveloped (the herpesvirus human cytomegalovirus) and non-enveloped (adenovirus) DNA viruses for four defined marine sulfated glycans: a sulfated galactan from the red alga Botryocladia occidentalis; a sulfated fucan from the sea urchin Lytechinus variegatus, and a sulfated fucan and a fucosylated chondroitin sulfate from the sea cucumber Isostichopus badionotus. As evidenced by gene expression, time of addition, and treatment/removal assays, all four novel glycans inhibited viral attachment and entry, most likely through interactions with virions. The sulfated fucans, which both lack anticoagulant activity, had similar antiviral profiles, suggesting that their activities are not only due to sulfation content or negative charge density but also due to other physicochemical factors such as the potential conformational shapes of these carbohydrates in solution and upon interaction with virion proteins. The structural and chemical properties of these marine sulfated glycans provide unique opportunities to explore relationships between glycan structure and their antiviral activities.


Asunto(s)
Adenoviridae/efectos de los fármacos , Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Polisacáridos/farmacología , Sulfatos/química , Organismos Acuáticos/química , Línea Celular , Heparitina Sulfato/farmacología , Humanos , Polisacáridos/química , Polisacáridos/clasificación , Rhodophyta/química , Virión/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA