RESUMEN
Livestock production in drylands requires consideration of the ecological applications of ecohydrological redistribution of water. Intensive cattle trampling and the associated increase of surface runoff are common concerns for rangeland productivity and sustainability. Here, we highlight a regional livestock production system in which cattle trails and trampling surrounding an artificial impoundment are purposely managed to enhance redistribution and availability of water for cattle drinking. Based on literature synthesis and field measurements, we first describe cattle production systems and surface water redistribution in the Dry Chaco rangelands of South America, and then develop a conceptual framework to synthesize the ecohydrological impacts of livestock production on these ecosystems. Critical to this framework is the pioshere-a degraded overgrazed and overtrampled area where vegetation has difficulties growing, usually close to the water points. The Dry Chaco rangelands have three key distinctive characteristics associated with the flat sedimentary environment lacking fresh groundwater and the very extensive ranching conditions: (1) cattle drinking water is provided by artificial impoundments filled by runoff, (2) heavy trampling around the impoundment and its adjacent areas generates a piosphere that favors runoff toward the impoundment, and (3) the impoundment, piosphere, and extensive forage areas are hydrologically connected with a network of cattle trails. We propose an ecohydrological framework where cattle transit and trampling alter the natural water circulation of these ecosystems, affecting small fractions of the landscape through increased runoff (compaction in piosphere and trails), surface connectivity (convergence of trails to piosphere to impoundment), and ponding (compaction of the impoundment floor) that operate together making water harvesting and storage possible. These effects have likely generated a positive water feedback on the expansion of livestock in the region with a relatively low impact on forage production. We highlight the role of livestock transit as a geomorphological agent capable of reshaping the hydrology of flat sedimentary rangelands in ways that can be managed positively for sustainable ranching systems. We suggest that the Dry Chaco offers an alternative paradigm for rangelands in which cattle trampling may contribute to sustainable seminatural production systems with implications for other dry and flat rangelands of the world.
Asunto(s)
Ecosistema , Ganado , Animales , Bovinos , Agua , Hidrología , América del SurRESUMEN
Forest-grassland ecotones are a mosaic of grassland, savanna, and upland forest. As such, landowners may have opportunities to choose to manage their lands for multiple objectives. We estimated the economic returns from managing forest and rangeland in southeastern Oklahoma, USA to produce different combinations of timber, cattle forage, and white-tailed deer (Odocoileus virginianus Zimmermann) browse for a 40-year period. We further conducted a survey to understand landowner perceptions of obstacles to adopting active management that involve timber harvest and prescribed fire. The highest net return was obtained from the treatment with harvested timber that was burned every four years (uneven-aged woodland/forest) because it had the greatest gross return from a combination of timber (46%), cattle forage (42%), and deer browse (11%). The return from this treatment was greater than that for managed for timber only (closed-canopy forest) or prioritizing cattle and deer (savanna). Survey results suggested that landowners were aware of the benefits of active management but that the majority (66%) considered cost a major obstacle in the management of their forest or rangeland. In particular, women forestland owners and older landowners considered cost an obstacle. Our findings advocate integrated timber, cattle, and deer management as the best economic strategy within the forest-grassland ecotone and for targeted outreach and landowner education related to the benefits of active management.
Asunto(s)
Ciervos , Animales , Femenino , Bovinos , Pradera , Bosques , Programas InformáticosRESUMEN
Alternanthera philoxeroides (Mart.) Griseb is one of the most malignant weeds in its invision habitats. While in the cadmium-contaminated aquatic environment, does A. philoxeroides possess good tolerance and adaptability? To demonstrate the effects of cadmium on A. philoxeroides in the polluted water bodies, a hydroponic stress experiment was conducted over a gradient of Cd concentrations (0, 2.5 and 5mg/l) in triplicate. The seedlings were cultured in a greenhouse and harvested on days 0, 10, 20, 30 and 40, respectively. The results showed the effects of mutual restraint between Cd and A. philoxeroides. The A. philoxeroides seedlings were enriched with large amounts of Cd, and the toxicity of Cd inhibited the rapid growth of A. philoxeroides and induced the rapid degradation of chlorophylls in its tissues. Furthermore, the use of iron plaque effectively immobilized Cd of 1123-2883mg/kg·DW on the root surface, thus it decreased the transferability of Cd in the aquatic environment. Due to its extensive adaptability, good Cd tolerance and the immobilization of Cd predominantly in the roots (the highest Cd concentration enriched was 7588.65±628.90mg/kg·DW in roots). A. philoxeroides effectively restrained the translocation of Cd and partitioned Cd in the roots within water bodies. CAPSULE: The antagonistic effect exists between the invasion of A. philoxeroides and cadmium mobility in aquatic environments.
Asunto(s)
Amaranthaceae/efectos de los fármacos , Amaranthaceae/crecimiento & desarrollo , Cadmio/toxicidad , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Amaranthaceae/química , Biodegradación Ambiental , Biomasa , Cadmio/análisis , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Hidroponía , Modelos Teóricos , Malezas/química , Contaminantes Químicos del Agua/análisisRESUMEN
Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.
Asunto(s)
Cambio Climático , Hidrología , Modelos Teóricos , Ríos/química , Urbanización , Contaminantes Químicos del Agua/análisis , China , Bosques , Nitrógeno/análisis , Fósforo/análisis , Calidad del AguaRESUMEN
Bacterial contamination of surface water is a public health concern. To quantify the efflux of Escherichia coli into ephemeral and intermittent streams and assess its numbers in relation to secondary body contact standards, we monitored runoff and measured E. coli numbers from 10 experimental watersheds that differed in vegetation cover and cattle access in north-central Oklahoma. Escherichia coli numbers were not significantly different among the watersheds, with one exception; the grazed prairie watershed (GP1) had greater numbers compared to one ungrazed prairie watershed (UP2). Median E. coli numbers in runoff from ungrazed watersheds ranged from 260 to 1482 MPN/100 mL in comparison with grazed watersheds that ranged from 320 to 8878 MPN/100 mL. In the GP1 watershed, higher cattle stocking rates during pre- and post-calving (February-May) resulted in significantly greater bacterial numbers and event loading compared to periods with lower stocking rates. The lack of significance among watersheds is likely due to the grazed sites being rotationally (and lightly) grazed, data variability, and wildlife contributions. To address wildlife sources, we used camera trap data to assess the usage in the watersheds; however, the average number of animals in a 24-h period did not correlate with observed median E. coli numbers. Because of its impacts on E. coli numbers in water, grazing management (stocking rate, rotation, and timing) should be considered for improving water quality in streams and reservoirs.
Asunto(s)
Ecosistema , Escherichia coli , Animales , Bovinos , Calidad del Agua , Ríos , Bacterias , OklahomaRESUMEN
The increase of tree canopy cover due to woody plant encroachment and tree plantations modifies both carbon and water dynamics. The tradeoffs between ecosystem net primary productivity (NPP) and water use with increasing tree cover in different climate conditions, particularly under future climate scenarios, are not well understood. Within the climate transition zone of the southern Great Plains, USA, we used the Soil and Water Assessment Tool+ (SWAT+) to investigate the combined impacts of increasing tree cover and climate change on carbon and water dynamics in three watersheds representing semiarid, subhumid, and humid climates. Model simulations incorporated two land use modifications (Baseline: existing tree cover; Forest +: increasing evergreen tree cover), in conjunction with two climate change projections (the RCP45 and the RCP85), spanning two time periods (historic: 1991-2020; future: 2070-2099). With climate change, the subhumid and humid watersheds exhibited a greater increase in evapotranspiration (ET) and a corresponding reduction in runoff compared to the semi-arid watershed, while the semi-arid and subhumid watersheds encountered pronounced losses in water availability for streams (>200 mm/year) due to increasing tree cover and climate change. With every 1 % increase in tree cover, both NPP and water use efficiency were projected to increase in all three watersheds under both climate change scenarios, with the subhumid watershed demonstrating the largest increases (>0.16 Mg/ha/year and 170 %, respectively). Increasing tree cover within grasslands, either through woody plant expansion or afforestation, boosts ecosystem NPP, particularly in subhumid regions. Nevertheless, this comes with a notable decrease in water resources, a concern made worse by future climate change. While afforestation offers the potential for greater NPP, it also brings heightened water scarcity concerns, highlighting the importance of tailoring carbon sequestration strategies within specific regions to mitigate unintended repercussions on water availability.
Asunto(s)
Cambio Climático , Ecosistema , Agua , Bosques , Árboles , CarbonoRESUMEN
Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration.
Asunto(s)
Transpiración de Plantas/fisiología , Árboles/fisiología , Agua/fisiología , Sequías , Calor , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Plantones/fisiología , Estados Unidos , Presión de VaporRESUMEN
Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species.
Asunto(s)
Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Sequías , Pinus/fisiología , Estrés Fisiológico , Cambio Climático , Pinus/metabolismo , Hojas de la Planta/metabolismo , Temperatura , Agua/metabolismo , Xilema/metabolismoRESUMEN
Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates--temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (approximately 4 degrees C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off.
Asunto(s)
Sequías , Pinus/crecimiento & desarrollo , Temperatura , Árboles/crecimiento & desarrollo , Carbono/metabolismo , Pinus/metabolismo , Hojas de la Planta/metabolismo , Sensibilidad y Especificidad , Factores de Tiempo , Árboles/metabolismoRESUMEN
Rangelands are globally extensive, provide fundamental ecosystem services, and are tightly coupled human-ecological systems. Rangeland sustainability depends largely on the implementation and utilization of various grazing and burning practices optimized to protect against soil erosion and transport. In many cases, however, land management practices lead to increased soil erosion and sediment fluxes for reasons that are poorly understood. Because few studies have directly measured both wind and water erosion and transport, an assessment of how they may differentially respond to grazing and burning practices is lacking. Here, we report simultaneous, co-located estimates of wind- and water-driven sediment transport in a semiarid grassland in Arizona, USA, over three years for four land management treatments: control, grazed, burned, and burned + grazed. For all treatments and most years, annual rates of wind-driven sediment transport exceeded that of water due to a combination of ongoing small but nontrivial wind events and larger, less frequent, wind events that generally preceded the monsoon season. Sediment fluxes by both wind and water differed consistently by treatment: burned + grazed > burned >> grazed > or = control, with effects immediately apparent after burning but delayed after grazing until the following growing season. Notably, the wind:water sediment transport ratio decreased following burning but increased following grazing. Our results show how rangeland practices disproportionally alter sediment fluxes driven by wind and water, differences that could potentially help explain divergence between rangeland sustainability and degradation.
Asunto(s)
Sedimentos Geológicos , Agua , Viento , Arizona , Clima , EcosistemaRESUMEN
On the dry, western edge of the eastern deciduous forest of the USA (Cross Timbers), the drought-tolerant, evergreen eastern redcedar (Juniperus virginiana) is encroaching into post oak- (Quercus stellata) dominated woodlands. The overall goal of this study was to examine whether the drought tolerance strategies of eastern redcedar provide it a competitive advantage over post oak and whether this is a key attribute facilitating its successful establishment in the Cross Timbers. Specifically, we assessed xylem water potential and leaf gas exchange of these two species growing in single-species stands and in a mixed-species stand. We found that both species exhibit a similar degree of isohydry and close their stomates to the same extent in response to declining xylem water potentials. Both species had similar relative reductions in gas exchange in response to drought, despite differences in xylem anatomy. However, post oak had leaf-level gas exchange rates approximately 5× greater than eastern redcedar during periods of high moisture availability. Therefore, it did not appear that eastern redcedar encroachment into an oak-dominated forest is facilitated by growing season differences in carbon gain, although evergreen eastern redcedar can conduct gas exchange year-round when conditions are favorable while post oak is deciduous. We found that volumetric soil water content (0-45 cm) was lower in the pure eastern redcedar stand than the mixed-species or pure post oak stand which may indicate that eastern redcedar may experience favorable soil moisture conditions when encroaching into open oak woodlands. Moreover, water potentials in eastern redcedar tended to be more negative in pure stands compared to the mixed stand. Our results suggest the two species may be using water from different depths, reducing competition. Overall, our findings indicate that eastern redcedar encroachment into formerly oak-dominated Cross Timbers forests likely will continue under moderate drought, in the absence of fire, with consequences for water budgets, carbon cycling, grazing forage, wildlife habitat, and wildfire risk.
RESUMEN
Extreme hydrological events such as flood and drought drive vegetation dynamics and are projected to increase in frequency in association with climate change, which could result in sequences of extreme events. However, experimental studies of vegetation responses to climate have largely focused on responses to a trend in climate or to a single extreme event but have largely overlooked the potential for complex responses to specific sequences of extreme events. Here we document, on the basis of an experiment with seedlings of three types of subtropical wetland tree species, that mortality can be amplified and growth can even be stimulated, depending on event sequence. Our findings indicate that the impacts of multiple extreme events cannot be modeled by simply summing the projected effects of individual extreme events but, rather, that models should take into account event sequences.
Asunto(s)
Sequías , Inundaciones , Plantones/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Humedales , Acer/crecimiento & desarrollo , Annona/crecimiento & desarrollo , Bursera/crecimiento & desarrollo , Florida , Dinámica PoblacionalRESUMEN
Long-term nitrogen (N) fertilization affects soil aggregation and localizations of soil organic carbon (SOC), N and microbial parameters within aggregates. The mechanisms of these N effects are poorly understood. We studied these processes in a loamy soil from a 23-year repeated N addition field experiment under a rice-barley rotation. Nitrogen fertilization increased plant productivity and the portion of large macroaggregates (>2mm). However, SOC contents in macro- and micro-aggregates remained constant despite an N-induced increase of 27% in root C input into soil. Therefore, N fertilization accelerated SOC turnover. Nitrogen addition increased total N (TN) content in bulk soil and two macroaggregates (>2, and 1-2mm), but not in microaggregates (<0.25mm). Also, N fertilization increased the phospholipid fatty acids (PLFAs) contents of fungi in the large macroaggregates, but not in the microaggregates. In contrast, the effect of N addition on contents of bacterial and total microbial PLFAs was not apparent. Nitrogen fertilization increased N-acetyl-ß-D-glucosaminidase (NAG) activities in the two larger macroaggregate size classes (>2, and 1-2mm), but not in the aggregates (<1mm). In both control and N fertilization, the large macroaggregates localized more TN, microbial PLFAs, and NAG activities than the microaggregates. In conclusion, long-term N fertilization not only directly promotes soil N resource but also indirectly improves soil structure by forming large macroaggregates, accelerates SOC turnover, and shiftes localization of microorganisms to the macroaggregates.
RESUMEN
Information on the spatio-temporal variability of soil moisture in the vadose zone is important to assess groundwater recharge and solute transport in unconsolidated substrate as influenced by biological processes. Time-lapse electrical resistivity imaging (ERI) was used to monitor soil moisture dynamics to a depth of 9 m in a grassland, a grassland encroached by a juniper species (eastern redcedar, Juniperus virginiana), a juniper woodland and an oak forest in the south-central Great Plains, Oklahoma, USA. A site-specific relationship between moisture content and electrical conductivity data was developed for the soil zone, and a perched water zone was monitored at two of the sites. Results showed that (a) change in soil moisture content was linearly correlated to change in electric conductivity in the soil zone; (b) vegetation cover type induced differences in vertical bulk electrical resistivity (ER) profiles and influenced the temporal evolution of soil moisture profiles; and (c) juniper encroachment lowered the water level in the perched groundwater aquifer. Our results suggest land use and vegetation cover type, as opposed to rock properties, controls deep water drainage for the vegetation transition zone. Methods used to measure hydrogeophysical changes, such as ERI, can be used for broader understanding of geological, physical, and biological processes and their links in Earth's critical zones.
RESUMEN
Rainfall partitioning and redistribution by canopies are important ecohydrological processes underlying ecosystem dynamics. We quantified and contrasted spatial and temporal variations of rainfall redistribution for a juniper (Juniperus virginiana, redcedar) woodland and a tallgrass prairie in the south-central Great Plains, USA. Our results showed that redcedar trees had high canopy storage capacity (S) ranging from 2.14 mm for open stands to 3.44 mm for closed stands. The canopy funneling ratios (F) of redcedar trees varied substantially among stand type and tree size. The open stands and smaller trees usually had higher F values and were more efficient in partitioning rainfall into stemflow. Larger trees were more effective in partitioning rainfall into throughfall and no significant changes in the total interception ratios among canopy types and tree size were found. The S values were highly variable for tallgrass prairie, ranging from 0.27 mm at early growing season to 3.86 mm at senescence. As a result, the rainfall interception by tallgrass prairie was characterized by high temporal instability. On an annual basis, our results showed no significant difference in total rainfall loss to canopy interception between redcedar trees and tallgrass prairie. Increasing structural complexity associated with redcedar encroachment into tallgrass prairie changes the rainfall redistribution and partitioning pattern at both the temporal and spatial scales, but does not change the overall canopy interception ratios compared with unburned and ungrazed tallgrass prairie. Our findings support the idea of convergence in interception ratio for different canopy structures under the same precipitation regime. The temporal change in rainfall interception loss from redcedar encroachment is important to understand how juniper encroachment will interact with changing rainfall regime and potentially alter regional streamflow under climate change.