Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 53(6): 1315-1330.e9, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33275896

RESUMEN

Various vaccine strategies have been proposed in response to the global COVID-19 pandemic, each with unique strategies for eliciting immune responses. Here, we developed nanoparticle vaccines by covalently conjugating the self-assembled 24-mer ferritin to the receptor binding domain (RBD) and/or heptad repeat (HR) subunits of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spike (S) protein. Compared to monomer vaccines, nanoparticle vaccines elicited more robust neutralizing antibodies and cellular immune responses. RBD and RBD-HR nanoparticle vaccinated hACE2 transgenic mice vaccinated with RBD and/or RBD-HR nanoparticles exhibited reduced viral load in the lungs after SARS-CoV-2 challenge. RBD-HR nanoparticle vaccines also promoted neutralizing antibodies and cellular immune responses against other coronaviruses. The nanoparticle vaccination of rhesus macaques induced neutralizing antibodies, and T and B cell responses prior to boost immunization; these responses persisted for more than three months. RBD- and HR-based nanoparticles thus present a promising vaccination approach against SARS-CoV-2 and other coronaviruses.


Asunto(s)
Proteínas Bacterianas/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Ferritinas/inmunología , Helicobacter pylori/metabolismo , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Proteínas Bacterianas/química , Vacunas contra la COVID-19/química , Ferritinas/química , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Pandemias , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Vacunación
2.
J Transl Med ; 22(1): 104, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279172

RESUMEN

Prostate cancer (PCa) is one of the most common malignant tumors affecting the male genitourinary system. However, there is currently a lack of effective treatments for patients with advanced prostate cancer, which significantly impacts men's overall health. Exonuclease 1 (EXO1), a protein with mismatch repair and recombination functions, has been found to play a vital role in various diseases. In our study, we discovered that EXO1 acts as a novel biomarker of PCa, which promotes prostate cancer progression by regulating lipid metabolism reprogramming in prostate cancer cells. Mechanistically, EXO1 promotes the expression of SREBP1 by inhibiting the P53 signaling pathway. In summary, our findings suggest that EXO1 regulated intracellular lipid reprogramming through the P53/SREBP1 axis, thus promoting PCa progression. The result could potentially lead to new insights and therapeutic targets for diagnosing and treating PCa.


Asunto(s)
Neoplasias de la Próstata , Proteína p53 Supresora de Tumor , Humanos , Masculino , Proteína p53 Supresora de Tumor/metabolismo , Metabolismo de los Lípidos , Neoplasias de la Próstata/patología , Lípidos , Exodesoxirribonucleasas/metabolismo , Enzimas Reparadoras del ADN
3.
J Transl Med ; 22(1): 295, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515112

RESUMEN

BACKGROUND: Bladder cancer (BC) is the most common urinary tract malignancy. Aurora kinase B (AURKB), a component of the chromosomal passenger protein complex, affects chromosomal segregation during cell division. Mitotic arrest-deficient 2-like protein 2 (MAD2L2) interacts with various proteins and contributes to genomic integrity. Both AURKB and MAD2L2 are overexpressed in various human cancers and have synergistic oncogenic effects; therefore, they are regarded as emerging therapeutic targets for cancer. However, the relationship between these factors and the mechanisms underlying their oncogenic activity in BC remains largely unknown. The present study aimed to explore the interactions between AURKB and MAD2L2 and how they affect BC progression via the DNA damage response (DDR) pathway. METHODS: Bioinformatics was used to analyze the expression, prognostic value, and pro-tumoral function of AURKB in patients with BC. CCK-8 assay, colony-forming assay, flow cytometry, SA-ß-gal staining, wound healing assay, and transwell chamber experiments were performed to test the viability, cell cycle progression, senescence, and migration and invasion abilities of BC cells in vitro. A nude mouse xenograft assay was performed to test the tumorigenesis ability of BC cells in vivo. The expression and interaction of proteins and the occurrence of the senescence-associated secretory phenotype were detected using western blot analysis, co-immunoprecipitation assay, and RT-qPCR. RESULTS: AURKB was highly expressed and associated with prognosis in patients with BC. AURKB expression was positively correlated with MAD2L2 expression. We confirmed that AURKB interacts with, and modulates the expression of, MAD2L2 in BC cells. AURKB knockdown suppressed the proliferation, migration, and invasion abilities of, and cell cycle progression in, BC cells, inducing senescence in these cells. The effects of AURKB knockdown were rescued by MAD2L2 overexpression in vitro and in vivo. The effects of MAD2L2 knockdown were similar to those of AURKB knockdown. Furthermore, p53 ablation rescued the MAD2L2 knockdown-induced suppression of BC cell proliferation and cell cycle arrest and senescence in BC cells. CONCLUSIONS: AURKB activates MAD2L2 expression to downregulate the p53 DDR pathway, thereby promoting BC progression. Thus, AURKB may serve as a potential molecular marker and a novel anticancer therapeutic target for BC.


Asunto(s)
Proteína p53 Supresora de Tumor , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
4.
Int J Med Sci ; 21(9): 1629-1639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006843

RESUMEN

The complete molecular mechanism underlying doxorubicin-induced cardiomyopathy remains incompletely elucidated. In this investigation, we engineered mice with cardiomyocyte-specific sorting nexin 3 knockout (SNX3Cko ) to probe the potential protective effects of SNX3 ablation on doxorubicin-triggered myocardial injury, focusing on GPX4-dependent ferroptosis. Our findings indicate that SNX3 deletion normalized heart contractile/relaxation function and thwarted the escalation of cardiac injury biomarkers following doxorubicin exposure. Additionally, SNX3 deletion in the heart mitigated the inflammatory response and oxidative stress in the presence of doxorubicin. At the molecular level, the detrimental effects of doxorubicin-induced cell death, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction were alleviated by SNX3 deficiency. Molecular analysis revealed the activation of GPX4-mediated ferroptosis by doxorubicin, whereas loss of SNX3 prevented the initiation of GPX4-dependent ferroptosis. Furthermore, treatment with erastin, a ferroptosis inducer, markedly reduced cell viability, exacerbated ER stress, and induced mitochondrial dysfunction in SNX3-depleted cardiomyocytes upon doxorubicin exposure. In summary, our results demonstrate that SNX3 deficiency shielded the heart from doxorubicin-induced myocardial dysfunction by modulating GPX4-associated ferroptosis.


Asunto(s)
Cardiomiopatías , Doxorrubicina , Ferroptosis , Ratones Noqueados , Miocitos Cardíacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Nexinas de Clasificación , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiomiopatías/genética , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos
5.
J Youth Adolesc ; 53(10): 2363-2377, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38811479

RESUMEN

Although parental psychological control has been well-documented as a significant predictor of social anxiety among adolescents, few studies examine how changes in parental psychological control and adolescent social anxiety are reciprocally related at the within-person level, especially in Chinese culture. This longitudinal study examined reciprocal relations between parental psychological control and social anxiety, and the potential mediating role of self-concept clarity, by disentangling between- and within-person effects. A total of 4731 students (44.9% girls; Mage = 10.91 years, SD = 0.72) participated in a four-wave longitudinal study with 6-month intervals. Results from random intercept cross-lagged panel modeling indicated that parental psychological control directly predicted social anxiety, and vice versa. Parental psychological control indirectly predicted social anxiety via self-concept clarity, and social anxiety also indirectly predicted parental psychological control via self-concept clarity. These findings reveal a vicious cycle of mutual influence between parental psychological control and adolescent social anxiety in Chinese youth, and highlight the crucial role of self-concept clarity in the interplay between parenting and adolescent social functioning.


Asunto(s)
Relaciones Padres-Hijo , Responsabilidad Parental , Autoimagen , Humanos , Femenino , Masculino , Estudios Longitudinales , Responsabilidad Parental/psicología , China , Adolescente , Niño , Ansiedad/psicología , Conducta del Adolescente/psicología , Pueblos del Este de Asia
6.
Environ Geochem Health ; 46(3): 75, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367077

RESUMEN

Asthma is a common chronic heterogeneous disease. Outdoor air pollutants are an important cause of acute asthma. Until now, the association between the risk of acute asthma and outdoor air pollutants is unclear. And the relationship between the different phenotypes of asthma and outdoor air pollutants has not been reported. Thus, an analysis of the association between outdoor air pollutants and daily acute asthma inpatient and outpatient visits in Xi'an, China, from January 1 to December 31, 2018, was conducted. A total of 3395 people were included in the study. The statistical analysis and relational analysis based on the logistic regression were used for illustrating the relatedness of the acute asthma risk factor and phenotype with outdoor air pollutants, while the age, gender, pollen peak and non-pollen peak periods, high type 2 (T2) asthma and non-high T2 asthma were also stratified. Results showed that particulate matter with particle size below 10 µm and 2.5 µm (PM10 and PM2.5), sulfur dioxide(SO2), nitrogen dioxide(NO2), and carbon monoxide(CO) increase the risk of acute asthma and that air pollutants have a lagged effect on asthma patients. PM10, NO2, CO, and Ozone (O3) are associated with an increased risk of acute attacks of high T2 asthma. PM10, PM2.5, SO2, NO2 and CO are associated with an increased risk of acute asthma in males of 0-16 years old. PM10 and PM2.5 are more harmful to asthma patients with abnormal lung function.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Masculino , Humanos , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Asma/inducido químicamente , Asma/epidemiología , Factores de Riesgo , China/epidemiología
7.
J Cell Mol Med ; 27(19): 2922-2936, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480214

RESUMEN

Although combination chemotherapy is widely used for bladder cancer (BC) treatment, the recurrence and progression rates remain high. Therefore, novel therapeutic targets are required. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) contributes to tumourigenesis and immune evasion in several cancers; however, its biological function in BC remains unknown. This study aimed to investigate the expression, prognostic value and protumoural function of MTHFD2 in BC and elucidate the mechanism of programmed death-ligand 1 (PD-L1) upregulation by MTHFD2. An analysis using publicly available databases revealed that a high MTHFD2 expression was correlated with clinical features and a poor prognosis in BC. Furthermore, MTHFD2 promoted the growth, migration, invasion and tumourigenicity and decreased the apoptosis of BC cells in vivo and in vitro. The results obtained from databases showed that MTHFD2 expression was correlated with immune infiltration levels, PD-L1 expression, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. The expression of MTHFD2, PD-L1 and JAK/STAT signalling pathway-related proteins increased after interferon gamma treatment and decreased after MTHFD2 knockdown. Moreover, addition of a JAK/STAT pathway activator partially reduced the effect of MTHFD2 knockdown on BC cells. Collectively, our findings suggest that MTHFD2 promotes the expression of PD-L1 through the JAK/STAT signalling pathway in BC.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria , Humanos , Antígeno B7-H1/genética , Transducción de Señal , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Neoplasias de la Vejiga Urinaria/genética
8.
J Hepatol ; 79(1): 126-140, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889359

RESUMEN

BACKGROUND & AIMS: The immune landscape of hepatocellular carcinoma (HCC) following transarterial chemoembolisation (TACE) remains to be clarified. This study aimed to characterise the immune landscape following TACE and the underlying mechanism of HCC progression. METHODS: Tumour samples from five patients with treatment-naive HCC and five patients who received TACE therapy were collected and subjected to single-cell RNA sequencing. Another 22 paired samples were validated using immunofluorescence staining and flow cytometry. To clarify the underlying mechanisms, in vitro co-culture experiments and two types of TREM2-KO/WT mouse models, namely, an HCC cell orthotopic injection model and a spontaneous HCC model, were used. RESULTS: A reduced number of CD8+ T cells and an increased number of tumour-associated macrophages (TAMs) were observed in the post-TACE microenvironment. TACE therapy reduced the cluster CD8_C4, which was highly enriched with tumour-specific CD8+ T cells of pre-exhausted phenotype. TREM2 was found to be highly expressed in TAMs following TACE, which was associated with a poor prognosis. TREM2+ TAMs secreted less CXCL9 but more galectin-1 than did TREM2- TAMs. Galectin-1 promoted PD-L1 overexpression in vessel endothelial cells, impeding CD8+ T cell recruitment. TREM2 deficiency also increased CD8+ T cell infiltration, which inhibited tumour growth in both in vivo HCC models. More importantly, TREM2 deficiency enhanced the therapeutic effect of anti-PD-L1 blockade. CONCLUSIONS: This study shows that TREM2+ TAMs play an important role in suppressing CD8+ T cells. TREM2 deficiency increased the therapeutic effect of anti-PD-L1 blockade by enhancing antitumour activity of CD8+ T cells. These findings explain the reasons for recurrence and progression after TACE and provide a new target for HCC immunotherapy after TACE. IMPACT AND IMPLICATIONS: Studying the immune landscape in post-TACE HCC is important to uncover the mechanisms of HCC progression. By using scRNA sequencing and functional assays, we discovered that both the number and function of CD8+ T cells are compromised, whereas the number of TREM2+ TAMs is increased in post-TACE HCC, correlating with worse prognosis. Moreover, TREM2 deficiency dramatically increases CD8+ T cell infiltration and augments the therapeutic efficacy of anti-PD-L1 blockade. Mechanistically, TREM2+ TAMs display lower CXCL9 and increased Gal-1 secretion than do TREM2- TAMs, with Gal-1 mediating the overexpression of PD-L1 in vessel endothelial cells. These results suggest that TREM2 could be a novel immunotherapeutic target for patients treated with TACE in HCC. This provides an opportunity to break the plateau of limited therapeutic effect. This study has the value of understanding the tumour microenvironment of post-TACE HCC and thinking a new strategy of immunotherapy in the field of HCC. It is therefore of key impact for physicians, scientists and drug developers in the field of liver cancer and gastrointestinal oncology.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Galectina 1/uso terapéutico , Linfocitos T CD8-positivos , Células Endoteliales/patología , Macrófagos , Microambiente Tumoral
9.
Cancer Cell Int ; 23(1): 221, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770925

RESUMEN

Bladder cancer (BCa) is one of the most common malignancies worldwide. However, the lack of accurate and effective targeted drugs has become a major problem in current clinical treatment of BCa. Studies have demonstrated that squalene epoxidase (SQLE), as a key rate-limiting enzyme in cholesterol biosynthesis, is involved in cancer development. In this study, our analysis of The Cancer Genome Atlas, The Genotype-Tissue Expression, and Gene Expression Omnibus databases showed that SQLE expression was significantly higher in cancer tissues than it was in adjacent normal tissues, and BCa tissues with a high SQLE expression displayed a poor prognosis. We then confirmed this result in qRT-PCR and immunohistochemical staining experiments, and our vitro studies demonstrated that SQLE knockdown inhibited tumor cell proliferation and metastasis through the PTEN/AKT/GSK3ß signaling pathway. By means of rescue experiments, we proved that that P53 is a key molecule in SQLE-mediated regulation of the PTEN/AKT/GSK3ß signaling pathway. Simultaneously, we verified the above findings through a tumorigenesis experiment in nude mice. In conclusion, our study shows that SQLE promotes BCa growth through the P53/PTEN/AKT/GSK3ß axis, which may serve as a therapeutic biological target for BCa.

10.
World J Surg Oncol ; 21(1): 309, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759234

RESUMEN

BACKGROUND: Although WD repeat and high-mobility group box DNA binding protein 1 (WDHD1) played an essential role in DNA replication, chromosome stability, and DNA damage repair, the panoramic picture of WDHD1 in human tumors remains unclear. Hence, this study aims to comprehensively characterize WDHD1 across 33 human cancers. METHODS: Based on publicly available databases such as TCGA, GTEx, and HPA, we used a bioinformatics approach to systematically explore the genomic features and biological functions of WDHD1 in pan-cancer. RESULTS: WDHD1 mRNA levels were significantly increased in more than 20 types of tumor tissues. Elevated WDHD1 expression was associated with significantly shorter overall survival (OS) in 10 tumors. Furthermore, in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma (LIHC), WDHD1 expression was significantly associated with higher histological grades and pathological stages. In addition, WDHD1 had a high diagnostic value among 16 tumors (area under the ROC curve [AUC] > 0.9). Functional enrichment analyses suggested that WDHD1 probably participated in many oncogenic pathways such as E2F and MYC targets (false discovery rate [FDR] < 0.05), and it was involved in the processes of DNA replication and DNA damage repair (p.adjust < 0.05). WDHD1 expression also correlated with the half-maximal inhibitory concentrations (IC50) of rapamycin (4 out of 10 cancers) and paclitaxel (10 out of 10 cancers). Overall, WDHD1 was negatively associated with immune cell infiltration and might promote tumor immune escape. Our analysis of genomic alterations suggested that WDHD1 was altered in 1.5% of pan-cancer cohorts and the "mutation" was the predominant type of alteration. Finally, through correlation analysis, we found that WDHD1 might be closely associated with tumor heterogeneity, tumor stemness, mismatch repair (MMR), and RNA methylation modification, which were all processes associated with the tumor progression. CONCLUSIONS: Our pan-cancer analysis of WDHD1 provides valuable insights into the genomic characterization and biological functions of WDHD1 in human cancers and offers some theoretical support for the future use of WDHD1-targeted therapies, immunotherapies, and chemotherapeutic combinations for the management of tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biología Computacional , Inmunoterapia , Biomarcadores , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Pronóstico , Proteínas de Unión al ADN
11.
Proc Natl Acad Sci U S A ; 117(7): 3603-3609, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015133

RESUMEN

5-Methylcytosine (m5C) is a RNA modification that exists in tRNAs and rRNAs and was recently found in mRNAs. Although it has been suggested to regulate diverse biological functions, whether m5C RNA modification influences adult stem cell development remains undetermined. In this study, we show that Ypsilon schachtel (YPS), a homolog of human Y box binding protein 1 (YBX1), promotes germ line stem cell (GSC) maintenance, proliferation, and differentiation in the Drosophila ovary by preferentially binding to m5C-containing RNAs. YPS is genetically demonstrated to function intrinsically for GSC maintenance, proliferation, and progeny differentiation in the Drosophila ovary, and human YBX1 can functionally replace YPS to support normal GSC development. Highly conserved cold-shock domains (CSDs) of YPS and YBX1 preferentially bind to m5C RNA in vitro. Moreover, YPS also preferentially binds to m5C-containing RNAs, including mRNAs, in germ cells. The crystal structure of the YBX1 CSD-RNA complex reveals that both hydrophobic stacking and hydrogen bonds are critical for m5C binding. Overexpression of RNA-binding-defective YPS and YBX1 proteins disrupts GSC development. Taken together, our findings show that m5C RNA modification plays an important role in adult stem cell development.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Óvulo/crecimiento & desarrollo , ARN/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Humanos , Ovario/metabolismo , Óvulo/metabolismo , ARN/genética , Células Madre/citología , Células Madre/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
12.
Ren Fail ; 45(1): 2238829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37488933

RESUMEN

BACKGROUND: End-stage renal disease (ESRD) patients have functional and structural brain abnormalities. The cerebellum also showed varying degrees of damage. However, no studies on cerebellar-cerebral functional connectivity (FC) have been conducted in ESRD patients. This study aimed to investigate the changes in cerebellar-cerebral FC in ESRD patients and its relationship with neuropsychological and clinical indexes. METHODS: Resting-state functional magnetic resonance imaging and neuropsychological assessment were performed on 37 ESRD patients and 35 control subjects. Seed-based FC analysis was performed to investigate inter-group differences in cerebellar-cerebral FC. In addition, the relations of altered FC with the neuropsychological function and clinical indicators were analyzed in ERSD patients. RESULTS: ESRD patients exhibited alterations in cerebellar-cerebral FC involving the executive control network, default mode network, and affective-limbic network compared to control subjects (False discovery rate-corrected, p < 0.05). The altered cerebellar-cerebral FC was associated with the Montreal Cognitive Assessment Scale score (p < 0.05), and correlated with serum creatinine and uric acid levels within the ESRD group (p < 0.05). CONCLUSIONS: The study indicates that cerebellar-cerebral FC is involved in the neural substrates of cognitive impairment in ESRD patients. The findings may provide clinically relevant new neuroimaging biomarkers for the neuropathological mechanisms underlying cognitive impairment of ESRD.


Asunto(s)
Disfunción Cognitiva , Fallo Renal Crónico , Humanos , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Fallo Renal Crónico/patología , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética/métodos
13.
Opt Express ; 30(3): 3793-3803, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209631

RESUMEN

In this paper, a novel phase modulation technique based on a corner-cube reflector (CCR) array is proposed and demonstrated experimentally. The piezoceramics are linked behind each CCR. When the beams irradiate on the CCR array, the phase modulation can be realized by applying a voltage to piezoceramics to control the spatial location of each CCR. The piston phase errors of the device itself are compensated by employing the stochastic parallel gradient descent (SPGD) algorithm. Then, the piezoceramics are loaded with preset voltages to obtain the expected phase, and the anticipative optical field is generated. In the experiment, the piston phase errors of the 7-way and 19-way CCR array are corrected well. In order to further verify the phase control capability of the device, a vortex beam carrying orbital angular momentum (OAM) of 1 is generated by utilizing the 6-way CCR array. The experimental results confirm the feasibility of the concept.

14.
Opt Lett ; 47(2): 365-368, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030607

RESUMEN

We demonstrated a beam conformal projection system for coherent combining of large-scale lasers over 2.1 km in turbulence 20 m above the ground, using the basic modules of a 19-element fiber phased array combined with coarse pointing by a gimbal mount. After coarse pointing and aberration corrections, the metrics (reflected light) of the combined beams from a basic module were best increased by 13.4 times, suggesting that our system promises the great effect of coherent combining under long-distance turbulence. Moreover, we tentatively realized coherent combining of two basic modules (38 lasers), which is the largest number of elements in a fiber laser coherent beam combination outdoors, to the best of our knowledge, with the metrics of combined beams increased by about 29 times.

15.
J Immunol ; 204(12): 3248-3261, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32358021

RESUMEN

Thymocyte differentiation is a highly complex process that is accompanied by epigenetic changes. Ubiquitin-like containing PHD ring finger 1 (UHRF1) is a critical epigenetic modifier involved in various cellular processes. In this study, we demonstrated that it is highly expressed in T cell precursors of the thymus. Further, its deficiency results in significantly reduced thymocyte cellularity and thymus size in mice. Through systematic analysis based on single-cell RNA sequencing, we found that UHRF1 deficiency thwarts αß T cell lineage development, whereas biasing γδ T lineage differentiation dampens the progression of immature single-positive cells. UHRF1 deficiency promotes the IL-17 secreting and RORγt expression in γδ T cell, indicating a Tγδ17 phenotype. Further, the analysis of gene-regulatory networks demonstrated that UHRF1 controls the expression of early growth response 1 (EGR1). UHRF1 interacts with DNA methyltransferase 1 (DNMT1) at the CpG promoter region of Egr1 loci and affects the nearby chromatin modifications of H3K9me3 and H3K4me3. Taken together, our results demonstrate that UHRF1 is a key factor that mediates the epigenetic regulation of EGR1 and, consequently, thymocyte fate decisions.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Epigénesis Genética/genética , Timocitos/fisiología , Ubiquitina-Proteína Ligasas/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1/genética , Regulación de la Expresión Génica/genética , Histonas/genética , Interleucina-17/genética , Linfocitos Intraepiteliales/fisiología , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Regiones Promotoras Genéticas/genética , Timo/fisiología
16.
Mol Ther ; 29(5): 1794-1807, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484968

RESUMEN

CD39, expressed by tumor-infiltrating lymphocytes (TILs), is a marker to identify tumor-reactive T cells, which is frequently associated with stronger antitumor activity than bystander T cells in a variety of malignancies. Therefore, CD39 could be a promising marker for identifying the active antitumor immune cells used for cellular immunotherapy. To test this possibility, we constructed the hepatitis B virus (HBV) surface protein-specific chimeric antigen receptor T cells (HBVs-CAR-T cells) and generated the personalized tumor-reactive CD8+ T cells. We subsequently assessed their antitumor efficiency mainly with a co-culture system for autologous HBVs+ HCC organoid and T cells. We found that both CD39+ HBVs-CAR-T and CD39+ personalized tumor-reactive CD8+ T cells induced much more apoptosis in HCC organoids. Although the exhaustion status of CAR-T cells increased in CD39+ CAR-T cells, triple knockdown of PD-1, Tim-3, and Lag-3 with shRNAs further enhanced antitumor activity in CD39+ CAR-T cells. Furthermore, these CD39+ CAR-T cells exerted an increased secretion of interferon-γ and stronger antitumor effect in a patient-derived xenograft mouse model. Our findings demonstrated that CD39 could be a promising biomarker to enrich active immune cells and become an indicator marker for evaluating the prognosis of immunotherapy for HCC patients.


Asunto(s)
Apirasa/metabolismo , Linfocitos T CD8-positivos/inmunología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , ARN Interferente Pequeño/administración & dosificación , Receptores de Antígenos de Linfocitos T/genética , Animales , Antígenos CD/genética , Carcinoma Hepatocelular/inmunología , Técnicas de Cocultivo , Terapia Combinada , Técnicas de Silenciamiento del Gen , Células Hep G2 , Receptor 2 Celular del Virus de la Hepatitis A/antagonistas & inhibidores , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Humanos , Interferón gamma/metabolismo , Neoplasias Hepáticas/inmunología , Ratones , Organoides/citología , Organoides/inmunología , Organoides/virología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , ARN Interferente Pequeño/farmacología , Receptores de Antígenos de Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína del Gen 3 de Activación de Linfocitos
17.
Sensors (Basel) ; 22(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35009670

RESUMEN

We propose an imaging method based on optical fiber bundle combined with micro-scanning technique for improving image quality without complex image reconstruction algorithms. In the proposed method, a piezoelectric-ceramic-chip is used as the micro-displacement driver of the optical fiber bundle, which has the advantages of small volume, fast response speed and high precision. The corresponding displacement of the optical fiber bundle can be generated by precise voltage controlling. An optical fiber bundle with core/cladding diameter 4/80 µm and hexagonal arrangement is used to scan the 1951 USAF target. The scanning step is 1 µm, which is equivalent to the diffraction limit resolution of the optical system. The corresponding information is recorded at high speed through photo-detectors and a high-resolution image is obtained by image stitching processing. The minimum distinguishable stripe width of the proposed imaging technique with piezoelectric-ceramic-chip driven micro-scanning is approximately 2.1 µm, which is 1 time higher than that of direct imaging with a CCD camera whose pixel size is close to the fiber core size. The experimental results indicate that the optical fiber bundle combined with piezoelectric-ceramic-chip driven micro-scanning is a high-speed and high-precision technique for high-resolution imaging.

18.
J Org Chem ; 85(4): 2733-2742, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31906619

RESUMEN

A protocol of visible-light-promoted C2 selective arylation of quinoline and pyridine N-oxides, with diaryliodonium tetrafluoroborate as an arylation reagent, using eosin Y as a photocatalyst for the construction of N-heterobiaryls was presented. This methodology provided an efficient way for the synthesis of 2-aryl-substituted quinoline and pyridine N-oxides. This strategy has the following advantages: specific regioselectivity, simple operation, good functional group tolerance, and high to moderate yields under mild conditions.

19.
Methods ; 159-160: 138-145, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30599195

RESUMEN

Time-lapse fluorescence microscopy is a powerful tool to study gene regulation. By probing fluorescent signals in single cells over extended period of time, this method can be used to study the dynamics, noise, movement, memory, inheritance, and coordination, of gene expression during cell growth, development, and differentiation. In combination with a flow-cell device, it can also measure gene regulation by external stimuli. Due to the single cell nature and the spatial/temporal capacity, this method can often provide information that is hard to get using other methods. Here, we review the standard experimental procedures and new technical developments in this field.


Asunto(s)
Regulación de la Expresión Génica , Microscopía Fluorescente/métodos , Saccharomycetales/genética , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Ciclo Celular , Eucariontes/genética , Colorantes Fluorescentes
20.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30068645

RESUMEN

Zika virus (ZIKV) is genetically and biologically related to other Flaviviridae family members and has disseminated to many countries. It is associated with severe consequences, including the abnormal development of the neural system in fetuses and neurological diseases in adults. Therefore, the development of anti-ZIKV drugs is of paramount importance. Screening of generic drugs revealed that several nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, ibuprofen, naproxen, acetaminophen, and lornoxicam, potently inhibited the entry of Zika virus Env/HIV-1-pseudotyped viruses. They also significantly inhibited the replication of wild-type ZIKV both in cell lines and in primary human fetal endothelial cells. Interestingly, the NSAIDs exerted this inhibitory effect by potently reducing the expression of AXL, the entry cofactor of ZIKV. Further studies showed that the NSAIDs downregulated the prostaglandin E2/prostaglandin E receptor 2 (EP2)/cAMP/protein kinase A (PKA) signaling pathway and reduced PKA-dependent CDC37 phosphorylation and the interaction between CDC37 and HSP90, which subsequently facilitated CHIP/ubiquitination/proteasome-mediated AXL degradation. Taken together, our results highlight a new mechanism of action of antiviral agents which may assist in designing a convenient strategy for treating ZIKV-infected patients.IMPORTANCE Zika virus (ZIKV) infection, which causes congenital malformations, including microcephaly and other neurological disorders, has attracted global attention. We observed that several NSAIDs significantly inhibited ZIKV infection. Based on our observations, we propose a novel mechanism of action of antiviral compounds which involves the blockade of virus entry via degradation of the entry cofactor. Furthermore, NSAIDs can be practically used for preventing ZIKV infection in pregnant women, as certain NSAIDs, including ibuprofen and acetaminophen, are considered clinically safe.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Células Endoteliales/virología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Virus Zika/fisiología , Células A549 , Animales , Línea Celular , Chlorocebus aethiops , Regulación hacia Abajo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Proteolisis , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/virología , Tirosina Quinasa del Receptor Axl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA