Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Small ; 20(10): e2304573, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37907426

RESUMEN

Transition metal diborides represented by MoB2 have attracted widespread attention for their excellent acidic hydrogen evolution reaction (HER). Nevertheless, their electrocatalytic performance is generally unsatisfactory in high-pH electrolytes. Heterogeneous interface engineering is one of the most promising methods for optimizing the composition and structure of electrocatalysts, thereby greatly affecting their electrochemical performance. Herein, a heterostructure, composed of MoB2 and carbon nanotubes (CNTs), is rationally constructed by boronizing precursors including (NH4 )4 [NiH6 Mo6 O24 ]·5H2 O (NiMo6 ) and Co complexes on the carbon cloth (Co,Ni-MoB2 @CNT/CC). In this method, NiMo6 is boronized to form MoB2 by a modified molten-salt-assisted borothermal reduction. Meanwhile, Co catalyzes extra carbon sources to grow CNTs on the surface of MoB2 . Thanks to the successful production of the heterostructure, Co,Ni-MoB2 @CNT/CC exhibits remarkable HER performance with a low overpotential of 98.6, 113.0, and 73.9 mV at 10 mA cm-2 in acidic, neutral, and alkaline electrolytes, respectively. Notably, even at 500 mA cm-2 , the electrochemical activity of Co,Ni-MoB2 @CNT/CC exceeds that of Pt/C/CC in an alkaline solution and maintains over 50 h. Theoretical calculations reveal that the construction of the heterostructure is beneficial to both water dissociation and reactive intermediate adsorption, resulting in superior alkaline HER performance.

2.
Angew Chem Int Ed Engl ; 63(15): e202400765, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38349119

RESUMEN

Metal single-atom catalysts represent one of the most promising non-noble metal catalysts for the oxygen reduction reaction (ORR). However, they still suffer from insufficient activity and, particularly, durability for practical applications. Leveraging density functional theory (DFT) and machine learning (ML), we unravel an unexpected collective effect between FeN4OH sites, CeN4OH motifs, Fe nanoparticles (NPs), and Fe-CeO2 NPs. The collective effect comprises differently-weighted electronic and geometric interactions, whitch results in significantly enhanced ORR activity for FeN4OH active sites with a half-wave potential (E1/2) of 0.948 V versus the reversible hydrogen electrode (VRHE) in alkaline, relative to a commercial Pt/C (E1/2, 0.851 VRHE). Meanwhile, this collective effect endows the shortened Fe-N bonds and the remarkable durability with negligible activity loss after 50,000 potential cycles. The ML was used to understand the intricate geometric and electronic interactions in collective effect and reveal the intrinsic descriptors to account for the enhanced ORR performance. The universality of collective effect was demonstrated effective for the Co, Ni, Cu, Cr, and Mn-based multicomponent ensembles. These results confirm the importance of collective effect to simultaneously improve catalytic activity and durability.

3.
Angew Chem Int Ed Engl ; 62(17): e202218478, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36789747

RESUMEN

Typical wide-band gap cathode interlayer materials are difficulty in reducing interface recombination without limiting charge transport in perovskite solar cells (PSCs). Here, a lead-doped titanium-oxo cluster protected by S-containing ligands is introduced at the interface of perovskite and SnO2 . By in situ heating, the cluster is transformed into PbSO4 -PbTi3 O7 heterostructure. The oxygen atoms from sulfate ion in heterostructure connect with iodine from perovskite to boost interfacial electron extraction and reduce charge recombination. While the yielded metallic interface between PbSO4 and PbTi3 O7 promotes the electron transport across the interface. Finally, an efficiency as high as 24.2 % for the modified PSC is obtained. The heterostructure well-stabilize the interface of perovskite and SnO2 , to greatly improve the device stability. This work provides a novel strategy to prepare wide-band gap cathode interlayer by directional transformation of heterometallic oxo clusters.

4.
Angew Chem Int Ed Engl ; 62(46): e202311606, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37754555

RESUMEN

Improving catalytic activity without loss of catalytic stability is one of the core goals in search of low-iridium-content oxygen evolution electrocatalysts under acidic conditions. Here, we synthesize a family of 66 SrBO3 perovskite oxides (B=Ti, Ru, Ir) with different Ti : Ru : Ir atomic ratios and construct catalytic activity-stability maps over composition variation. The maps classify the multicomponent perovskites into chemical groups with distinct catalytic activity and stability for acidic oxygen evolution reaction, and highlights a chemical region where high catalytic activity and stability are achieved simultaneously at a relatively low iridium level. By quantifying the extent of hybridization of mixed transition metal 3d-4d-5d and oxygen 2p orbitals for multicomponent perovskites, we demonstrate this complex interplay between 3d-4d-5d metals and oxygen atoms in governing the trends in both activity and stability as well as in determining the catalytic mechanism involving lattice oxygen or not.

5.
Small ; 18(10): e2107371, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35018710

RESUMEN

A joint theoretical and experimental study is reported to systematically explore over a library of transition metal-silicon intermetallics for understanding silicon-controlled active site motifs and discovering hydrogen-evolving electrocatalysts. On the one hand, every low-index surface termination of 115 transition metal (M)-silicon (Si) intermetallics is enumerated, followed by cataloging of stable adsorption sites and prediction of catalytic activities on the main exposed facets. It is theoretically found that silicon atoms in silicon-rich structures (especially MSi2 and MSi) show a strong site-isolating effect, which can eliminate M-M-M hollow and M-M bridge sites with too strong hydrogen-binding ability and thereby provide great opportunities for the exposure of novel highly active sites (e.g., M-top and Si-related sites). On the other hand, solid-state redox reactions are developed to synthesize a set of 24 silicides containing 5 MSi, 13 MSi2 , and 6 others, most of which are phase-pure samples. The experimental studies demonstrate that too rich silicon content in silicides (e.g., MSi2 ) leads to adverse effects, such as the formation of amorphous SiOx layers on the silicide surface, masking the presence of active sites during electrocatalysis. Finally, 5 MSi (M = Rh, Pd, Pt, Ru, Ir) as highly active hydrogen-evolving electrocatalysts are identified.

6.
Angew Chem Int Ed Engl ; 61(14): e202116308, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35014146

RESUMEN

Aromatic passivators, such as porphyrin, with large π-backbones have attracted considerable attention to boost the charge carrier in polycrystalline perovskite films, thus enabling the fabrication of efficient and stable perovskite solar cells (PSCs). However, they often self-assemble into supramolecules that probably influence the charge-transfer process in the perovskite grain boundary. Here, by doping a monoamine Cu porphyrin into perovskite films, two porphyrin-based self-assembled supramolecules were successfully prepared between perovskite grains. Crystal structures and theoretical analyses reveal the presence of a stronger interaction between the amine units and the central Cu ions of neighbouring porphyrins in one of the supramolecules. This has a modified effect on the dipole direction of the porphyrins to be quantized as homogeneously large polarons (HLPs) in a periodic lattice. The porphyrin supramolecules can stabilize perovskite grain boundaries to greatly improve the stability of PSCs, while the HLPs-featured supramolecule facilitates hole transport across perovskite grains to remarkably increase the cell performance to as high as 24.2 %. This work proves that the modulation of the intermolecular interaction of aromatic passivators to yield HLPs is crucial for the cascaded acceleration of charge transport between perovskite grains.

7.
Inorg Chem ; 60(1): 32-36, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337138

RESUMEN

A Sr2+-doping strategy is developed to engineer rich oxygen vacancies in porous titania for boosting visible-light-driven photocatalytic activity. The incorporation of strontium, with a larger atom radius than titanium, leads to the release of a lattice oxygen atom in the titania, causing the generation of an oxygen vacancy. The optimal Sr2+-doped titania sample with rich oxygen vacancies achieves a photocatalytic hydrogen production rate as high as 1092 µmol h-1 g-1, which is 4 and 16 times higher than the unmodified titania with less oxygen vacancies and the bench-marked P25, respectively.

8.
Angew Chem Int Ed Engl ; 59(44): 19654-19658, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32485084

RESUMEN

Reducing the amount of iridium in oxygen evolution electrocatalysts without compromising their catalytic performances is one of the major requirements in proton-exchange-membrane water electrolyzers. Herein, with the help of theoretical studies, we show that anatase-type TiO2 -IrO2 solid solutions possess more active iridium catalytic sites for the oxygen evolution reaction (OER) than IrO2 , the benchmark OER catalyst. Note that the same is not observed for their rutile-type counterparts. However, owing to their thermodynamic metastability, anatase-type TiO2 -IrO2 solid solutions are generally hard to synthesize. Our theoretical studies demonstrate that such catalytically active anatase-type solid-solution phases can be created in situ on the surfaces of readily available SrTiO3 -SrIrO3 solid solutions during electrocatalysis in acidic solution as the solution can etch away Sr atoms. We experimentally show this with porous SrTiO3 -SrIrO3 solid-solution nanotubes synthesized by a facile synthetic route that contain 56 % less iridium than IrO2 yet show an order of magnitude higher apparent catalytic activity for OER in acidic solution.

9.
Angew Chem Int Ed Engl ; 59(10): 3961-3965, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31899847

RESUMEN

A theoretical and experimental study gives insights into the nature of the metal-boron electronic interaction in boron-bearing intermetallics and its effects on surface hydrogen adsorption and hydrogen-evolving catalytic activity. Strong hybridization between the d orbitals of transition metal (TM ) and the sp orbitals of boron exists in a family of fifteen TM -boron intermatallics (TM :B=1:1), and hydrogen atoms adsorb more weakly to the metal-terminated intermetallic surfaces than to the corresponding pure metal surfaces. This modulation of electronic structure makes several intermetallics (e.g., PdB, RuB, ReB) prospective, efficient hydrogen-evolving materials with catalytic activity close to Pt. A general reaction pathway towards the synthesis of such TM B intermetallics is provided; a class of seven phase-pure TM B intermetallics, containing V, Nb, Ta, Cr, Mo, W, and Ru, are thus synthesized. RuB is a high-performing, non-platinum electrocatalyst for the hydrogen evolution reaction.

10.
Angew Chem Int Ed Engl ; 58(33): 11409-11413, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31187910

RESUMEN

The fundamental understanding and rational manipulation of catalytic site preference at extended solid surfaces is crucial in the search for advanced catalysts. Herein we find that the Ru top sites at metallic ruthenium surface have efficient Pt-like activity for the hydrogen evolution reaction (HER), but they are subordinate to their adjacent, less active Ru3 -hollow sites due to the stronger hydrogen-binding ability of the latter. We also present an interstitial incorporation strategy for the promotion of the Ru top sites from subordinate to dominant character, while maintaining Pt-like catalytic activity. Our combined theoretical and experimental studies further identify intermetallic RuSi as a highly active, non-Pt material for catalyzing the HER, because of its suitable electronic structure governed by a good balance of ligand and strain effects.

11.
Angew Chem Int Ed Engl ; 58(23): 7631-7635, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-30775830

RESUMEN

Simultaneous realization of improved activity, enhanced stability, and reduced cost remains a desirable yet challenging goal in the search of oxygen evolution electrocatalysts in acid. Herein we report iridium-containing strontium titanates (Ir-STO) as active and stable, low-iridium perovskite electrocatalysts for the oxygen evolution reaction (OER) in acid. The Ir-STO contains 57 wt % less iridium relative to the benchmark catalyst IrO2 , but it exhibits more than 10 times higher catalytic activity for OER. It is shown to be among the most efficient iridium-based oxide electrocatalysts for OER in acid. Theoretical results reveal that the incorporation of iridium dopants in the STO matrix activates the intrinsically inert titanium sites, strengthening the surface oxygen adsorption on titanium sites and thereby giving nonprecious titanium catalytic sites that have activities close to or even better than iridium sites.

12.
Chem Rev ; 116(6): 3722-811, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26935812

RESUMEN

The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis. The synthesis part discusses numerous preparative protocols for Cu and Cu-based nanoparticles, whereas the application sections describe their utility as catalysts, including electrocatalysis, photocatalysis, and gas-phase catalysis. We believe this critical appraisal will provide necessary background information to further advance the applications of Cu-based nanostructured materials in catalysis.

13.
J Am Chem Soc ; 139(36): 12370-12373, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28686430

RESUMEN

Developing nonprecious hydrogen evolution electrocatalysts that can work well at large current densities (e.g., at 1000 mA/cm2: a value that is relevant for practical, large-scale applications) is of great importance for realizing a viable water-splitting technology. Herein we present a combined theoretical and experimental study that leads to the identification of α-phase molybdenum diboride (α-MoB2) comprising borophene subunits as a noble metal-free, superefficient electrocatalyst for the hydrogen evolution reaction (HER). Our theoretical finding indicates, unlike the surfaces of Pt- and MoS2-based catalysts, those of α-MoB2 can maintain high catalytic activity for HER even at very high hydrogen coverage and attain a high density of efficient catalytic active sites. Experiments confirm α-MoB2 can deliver large current densities in the order of 1000 mA/cm2, and also has excellent catalytic stability during HER. The theoretical and experimental results show α-MoB2's catalytic activity, especially at large current densities, is due to its high conductivity, large density of efficient catalytic active sites and good mass transport property.

14.
Chem Soc Rev ; 44(15): 5148-80, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25886650

RESUMEN

Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.


Asunto(s)
Electrólisis , Hidrógeno/química , Procesos Fotoquímicos , Energía Renovable , Agua/química , Catálisis
15.
Angew Chem Int Ed Engl ; 55(38): 11442-6, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27529769

RESUMEN

A facile synthetic route is presented that produces a porous Ga-In bimetallic oxide nanophotocatalyst with atomically thin pore walls. The material has an unprecedented electronic structure arising from its ultrathin walls. The bottom of the conduction band and the top of the valence band of the material are distributed on two opposite surfaces separated with a small electrostatic potential difference. This not only shortens the distance by which the photogenerated charges travel from the sites where they are generated to the sites where they catalyze the reactions, but also facilitates charge separations in the material. The porous structure within the walls results in a large density of exposed surface reactive/catalytic sites. Because of these optimized electronic and surface structures, the material exhibits superior photocatalytic activity toward the hydrogen evolution reaction (HER).

16.
J Am Chem Soc ; 137(44): 14023-6, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26352297

RESUMEN

Elaborate design of highly active and stable catalysts from Earth-abundant elements has great potential to produce materials that can replace the noble-metal-based catalysts commonly used in a range of useful (electro)chemical processes. Here we report, for the first time, a synthetic method that leads to in situ growth of {2̅10} high-index faceted Ni3S2 nanosheet arrays on nickel foam (NF). We show that the resulting material, denoted Ni3S2/NF, can serve as a highly active, binder-free, bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Ni3S2/NF is found to give ∼100% Faradaic yield toward both HER and OER and to show remarkable catalytic stability (for >200 h). Experimental results and theoretical calculations indicate that Ni3S2/NF's excellent catalytic activity is mainly due to the synergistic catalytic effects produced in it by its nanosheet arrays and exposed {2̅10} high-index facets.

17.
Angew Chem Int Ed Engl ; 54(37): 10752-7, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26212796

RESUMEN

In our efforts to obtain electrocatalysts with improved activity for water splitting, meticulous design and synthesis of the active sites of the electrocatalysts and deciphering how exactly they catalyze the reaction are vitally necessary. Herein, we report a one-step facile synthesis of a novel precious-metal-free hydrogen-evolution nanoelectrocatalyst, dubbed Mo2 C@NC that is composed of ultrasmall molybdenum carbide (Mo2 C) nanoparticles embedded within nitrogen-rich carbon (NC) nanolayers. The Mo2 C@NC hybrid nanoelectrocatalyst shows remarkable catalytic activity, has great durability, and gives about 100 % Faradaic yield toward the hydrogen-evolution reaction (HER) over a wide pH range (pH 0-14). Theoretical calculations show that the Mo2 C and N dopants in the material synergistically co-activate adjacent C atoms on the carbon nanolayers, creating superactive nonmetallic catalytic sites for HER that are more active than those in the constituents.

18.
J Am Chem Soc ; 136(39): 13554-7, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25188332

RESUMEN

Replacing rare and expensive metal catalysts with inexpensive and earth-abundant ones is currently among the major goals of sustainable chemistry. Herein we report the synthesis of N-, O-, and S-tridoped, polypyrrole-derived nanoporous carbons (NOSCs) that can serve as metal-free, selective electrocatalysts and catalysts for oxygen reduction reaction (ORR) and alcohol oxidation reaction (AOR), respectively. The NOSCs are synthesized via polymerization of pyrrole using (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, followed by carbonization of the resulting S-containing polypyrrole/silica composite materials and then removal of the silica templates. The NOSCs exhibit good catalytic activity toward ORR with low onset potential and low Tafel slope, along with different electron-transfer numbers, or in other words, different ratios H2O/H2O2 as products, depending on the relative amount of colloidal silica used as templates. The NOSCs also effectively catalyze AOR at relatively low temperature, giving good conversions and high selectivity.

19.
Angew Chem Int Ed Engl ; 53(17): 4372-6, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24652809

RESUMEN

Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts-which also play crucial roles in the overall water-splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co(2+) -embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2 ). The materials' efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects.

20.
Chem Commun (Camb) ; 60(25): 3453-3456, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38445663

RESUMEN

The oxygen evolution reaction (OER) over a family of metal-doped rutile IrO2 catalysts is theoretically investigated by controlling the species and position of doped elements. The subsurface substitution doping is demonstrated to efficiently regulate the eg-filling of surface iridium sites and lower the adsorption strength of oxygen intermediates, improving the catalytic activity for the OER. Finally, based on screening, subsurface Cu- and Li-doped IrO2 models stand near the top of the volcano plot and display high levels of structural stability toward acidic OER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA