Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Neuroendocrinol ; 70: 101068, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37061205

RESUMEN

Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.


Asunto(s)
Enfermedades Cardiovasculares , Estrógenos , Humanos , Encéfalo , Menopausia/psicología , Cognición , Enfermedades Cardiovasculares/tratamiento farmacológico
2.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R328-R337, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231420

RESUMEN

The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.


Asunto(s)
Ganglios Simpáticos/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Dopamina beta-Hidroxilasa/metabolismo , Riñón/inervación , Masculino , Ratones , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
3.
J Neurophysiol ; 121(1): 140-151, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461371

RESUMEN

Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions. Here we aimed to determine the functional expression of TRPV1 in two hypothalamic nuclei known to be involved in the central control of metabolism and to test the hypothesis that TRPV1-expressing neurons receive TRPV1-expressing inputs. A mouse model (TRPV1Cre/tdTom) was generated to identify TRPV1-expressing cells and determine the cellular properties of TRPV1-expressing neurons in adult mice. Our study demonstrated the functional expression of TRPV1 in the dorsomedial hypothalamic nucleus and paraventricular nucleus in adult mice. Our findings revealed that a subset of TRPV1Cre/tdTom neurons receive TRPV1-expressing excitatory inputs, indicating direct interaction between TRPV1-expressing neurons. In addition, astrocytes likely play a role in the modulation of TRPV1-expressing neurons. In summary, this study identified specific hypothalamic regions where TRPV1 is expressed and functional in adult mice and the existence of direct connections between TRPV1Cre/tdTom neurons. NEW & NOTEWORTHY Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the hypothalamus, and TRPV1-dependent regulation of preautonomic neurons is decreased in hyperglycemic conditions. Our study demonstrated functional expression of TRPV1 in two hypothalamic nuclei involved in the control of energy homeostasis. Our results also revealed that a subset of TRPV1-expressing neurons receive TRPV1-expressing excitatory inputs. These findings suggest direct interaction between TRPV1-expressing neurons.


Asunto(s)
Hipotálamo/metabolismo , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Dependovirus , Femenino , Hipotálamo/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Neuronas/citología , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Canales Catiónicos TRPV/genética , Técnicas de Cultivo de Tejidos , Proteína Fluorescente Roja
4.
J Neurosci ; 37(46): 11140-11150, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29038244

RESUMEN

Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism.SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus. Despite the importance of the brain-liver pathway, the overall activity of liver-related neurons in control and diabetic conditions is not known. This is a significant gap in knowledge, which prevents developing strategies to improve glucose homeostasis via altering the brain-liver pathway. One of the key findings of our study is the overall shift toward excitation in liver-related hypothalamic neurons in the diabetic condition. This overactivity may be one of the underlying mechanisms of elevated sympathetic activity known in metabolically compromised patients and animal models.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Hígado/fisiopatología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiopatología , Animales , Diabetes Mellitus Tipo 2/genética , Fenómenos Electrofisiológicos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
Cell Mol Neurobiol ; 38(1): 233-242, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28478572

RESUMEN

Although the deleterious influence of protein deficiency on fetal programming is well documented, the impact of a Western diet on epigenetic mechanisms is less clear. We hypothesized that high-fat high-sucrose diet (HFHSD) consumption during pregnancy leads to epigenetic modifications within the progeny's compensatory renin-angiotensin system (RAS), affecting autonomic and metabolic functions. Dams were fed HFHSD (45% fat and 30% sucrose) or regular chow (RD) from mating until weaning of the pups (~7 weeks). Offspring from both groups were then maintained on chow and studied in adulthood (3-7 months). Offspring from HFHSD-exposed dams (OH) exhibited no difference in body weight or fasting blood glucose compared to controls (OR). In 3-month-old offspring, DNA methylation was significantly lower for the ACE2 gene (P < 0.05) in the brainstem, kidney and cecum. Moreover, ACE2 activity in the hypothalamus was increased at 7 months (OH: 91 ± 1 vs. OR: 74 ± 4 AFU/mg/min, P < 0.05). Although baseline blood pressure was not different between groups, vagal tone in OH was significantly impaired compared to OR. At the same time, OH offspring had a 1.7-fold increase in AT1a receptor expression and a 1.3-fold increase in ADAM17 mRNA. DOCA-salt treatment further revealed and exacerbated hypertensive response in the OH progeny (OH: 130 ± 6 vs. OR: 108 ± 3 mmHg, P < 0.05). Taken together, our data suggest that perinatal exposure to HFHSD resulted in epigenetic modifications of the compensatory brain RAS, potentially affecting plasticity of neuronal networks leading to autonomic dysfunction in the male offspring.


Asunto(s)
Presión Sanguínea/fisiología , Dieta Occidental/efectos adversos , Epigénesis Genética/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factores de Edad , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Peso Corporal/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Metilación de ADN/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Sistema Renina-Angiotensina/fisiología
6.
J Neurosci ; 36(18): 5034-46, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147656

RESUMEN

UNLABELLED: The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRb(POA) neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRb(POA) neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRb(POA) neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT: Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRb(POA) neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRb(POA) neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRb(POA) neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study significantly expands our current understanding of central circuits and mechanisms that modulate energy homeostasis.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Peso Corporal/fisiología , Glutamatos/fisiología , Homeostasis/fisiología , Neuronas/fisiología , Área Preóptica/citología , Área Preóptica/fisiología , Receptores de Leptina/biosíntesis , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/fisiología , Animales , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/fisiología , Ratones , Receptores Adrenérgicos beta 3/efectos de los fármacos , Receptores Adrenérgicos beta 3/fisiología , Receptores de Leptina/genética , Temperatura
7.
Am J Physiol Endocrinol Metab ; 310(3): E183-9, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26646097

RESUMEN

Diabetes mellitus and the coexisting conditions and complications, including hypo- and hyperglycemic events, obesity, high cholesterol levels, and many more, are devastating problems. Undoubtedly, there is a huge demand for treatment and prevention of these conditions that justifies the search for new approaches and concepts for better management of whole body metabolism. Emerging evidence demonstrates that the autonomic nervous system is largely involved in the regulation of glucose homeostasis; however, the underlying mechanisms are still under investigation. Within the hypothalamus, the paraventricular nucleus (PVN) is in a unique position to integrate neural and hormonal signals to command both the autonomic and neuroendocrine outflow. This minireview will provide a brief overview on the role of preautonomic PVN neurons and the importance of the PVN-liver pathway in the regulation of glucose homeostasis.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Neuronas/metabolismo , Sistemas Neurosecretores/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Encéfalo/metabolismo , Homeostasis , Humanos
8.
J Neurophysiol ; 115(3): 1389-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26719086

RESUMEN

Olanzapine, an atypical antipsychotic, is widely prescribed for the treatment of schizophrenia and bipolar disorder despite causing undesirable metabolic side effects. A variety of mechanisms and brain sites have been proposed as contributors to the side effects; however, the role of the dorsal motor nucleus of the vagus nerve (DMV), which plays a crucial role in the regulation of subdiaphragmatic organs and thus governs energy and glucose homeostasis, is largely unknown. Identifying the effect of olanzapine on the excitability of DMV neurons in both sexes is thus crucial to understanding possible underlying mechanisms. Whole cell patch-clamp electrophysiological recordings were conducted in stomach- and liver-related DMV neurons identified with retrograde viral tracers and in random DMV neurons. The effect of olanzapine on the neuronal excitability of DMV neurons both in male and female mice was established. Our data demonstrate that olanzapine hyperpolarizes the DMV neurons in both sexes and this effect is reversible. The hyperpolarization is associated with decreased firing rate and input resistance. Olanzapine also decreases the excitability of a subset of stomach- and liver-related DMV neurons. Our study demonstrates that olanzapine has a powerful effect on DMV neurons in both sexes, indicating its ability to reduce vagal output to the subdiaphragmatic organs, which likely contributes to the metabolic side effects observed in both humans and experimental models. These findings suggest that the metabolic side effects of olanzapine may partially originate in the DMV.


Asunto(s)
Antipsicóticos/efectos adversos , Benzodiazepinas/efectos adversos , Tronco Encefálico/efectos de los fármacos , Potenciales de Acción , Animales , Tronco Encefálico/fisiología , Femenino , Hígado/inervación , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Olanzapina , Estómago/inervación , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología
9.
Acta Biol Hung ; 67(4): 364-372, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28000510

RESUMEN

By means of whole mount NADPH-diaphorase histochemistry the distribution pattern of primary sensory cells (PSC) and the pathway of their central processes in the ventral nerve cord (VNC) ganglia were investigated in the lumbricid earthworms, Eisenia fetida and Lumbricus terrestris. The distribution pattern of the stained structures seemed to be the same in both species investigated. Strong labelling occurred in sensory fibre branches of segmental nerves and in each of the sensory longitudinal axon bundles of VNC ganglia. Based on their anatomical location some NADPH-d positive central sensory cells were identified from among which the putative tactile receptors were characterized by constant, strong staining.


Asunto(s)
Sistema Nervioso Central/metabolismo , Ganglios Sensoriales/metabolismo , NADPH Deshidrogenasa/metabolismo , Oligoquetos/metabolismo , Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Colorantes , Ganglios/metabolismo , Histocitoquímica
10.
Am J Physiol Heart Circ Physiol ; 306(1): H33-40, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24186096

RESUMEN

The transient receptor potential vanilloid 4 (TRPV4) channel is a nonselective cation channel expressed on many cell types, including the vascular endothelium and smooth muscle cells. TRPV4 channels play a role in regulating vasomotor tone and capillary permeability. The present study was undertaken to investigate responses to the TRPV4 agonist GSK101790A on the pulmonary and systemic vascular beds in the rat. Intravenous injection of GSK1016790A at doses of 2-10 µg/kg produced dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and small increases in cardiac output, and responses were not altered by the cyclooxygenase inhibitor meclofenamate or the cytochrome P-450 inhibitor miconazole. Injection of GSK1016790A at a dose of 12 µg/kg iv produced cardiovascular collapse that was reversible in some animals. GSK1016790A produced dose-related decreases in pulmonary and systemic arterial pressure when baseline tone in the pulmonary vascular bed was increased with U-46619. After treatment with the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester, GSK1016790A produced larger decreases in systemic arterial pressure and dose-dependent increases in pulmonary arterial pressure followed by a small decrease. These results demonstrate that GSK1016790A has vasodilator activity in pulmonary and systemic vascular beds and that when NOS is inhibited, GSK1016790A produced pulmonary vasoconstrictor responses that were attenuated by the L-type Ca(2+) channel antagonist isradipine. The presence of TRPV4 immunoreactivity was observed in small pulmonary arteries and airways. The present data indicate that responses to TRPV4 are modulated differently by NOS in pulmonary and systemic vascular beds and are attenuated by the TRPV4 antagonist GSK2193874.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Leucina/análogos & derivados , Arteria Pulmonar/efectos de los fármacos , Sulfonamidas/farmacología , Canales Catiónicos TRPV/agonistas , Animales , Gasto Cardíaco/efectos de los fármacos , Isradipino/farmacología , Leucina/farmacología , Masculino , Ácido Meclofenámico/farmacología , Miconazol/farmacología , NG-Nitroarginina Metil Éster/farmacología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiología , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
11.
Am J Pathol ; 183(5): 1608-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24160325

RESUMEN

By using pseudorabies virus expressing green fluorescence protein, we found that efferent bone marrow-neural connections trace to sympathetic centers of the central nervous system in normal mice. However, this was markedly reduced in type 1 diabetes, suggesting a significant loss of bone marrow innervation. This loss of innervation was associated with a change in hematopoiesis toward generation of more monocytes and an altered diurnal release of monocytes in rodents and patients with type 1 diabetes. In the hypothalamus and granular insular cortex of mice with type 1 diabetes, bone marrow-derived microglia/macrophages were activated and found at a greater density than in controls. Infiltration of CD45(+)/CCR2(+)/GR-1(+)/Iba-1(+) bone marrow-derived monocytes into the hypothalamus could be mitigated by treatment with minocycline, an anti-inflammatory agent capable of crossing the blood-brain barrier. Our studies suggest that targeting central inflammation may facilitate management of microvascular complications.


Asunto(s)
Médula Ósea/inervación , Médula Ósea/patología , Sistema Nervioso Central/patología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/patología , Inflamación/patología , Animales , Médula Ósea/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis/efectos de los fármacos , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/fisiología , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Minociclina/farmacología , Modelos Biológicos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neurotransmisores/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/patología
12.
J Neurophysiol ; 110(9): 2192-202, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23966668

RESUMEN

Activity of presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus is known to play an important role in the regulation of sympathetic outflow. Sympathetic overactivity is associated with many pathophysiological conditions such as diabetes mellitus and hypertension; however, the underlying synaptic mechanisms are poorly understood. In this study, we examined the GABAergic inhibitory synaptic control of kidney-related presympathetic PVN neurons in the streptozotocin-treated type 1 diabetic mouse model, using patch-clamp slice electrophysiology in combination with retrograde labeling. Type 1 diabetes resulted in decreased frequency of miniature inhibitory postsynaptic currents (mIPSCs). Our data also demonstrated a reduction of mIPSC amplitude and mean inhibitory current without alteration of input resistance. Furthermore, our data revealed decreased tonic GABAergic inhibition of kidney-related PVN neurons in diabetic conditions, which was consistent with the observed increased excitability of the presympathetic PVN neurons. In summary, our data demonstrated decreased phasic and tonic inhibitory control of kidney-related presympathetic PVN neurons that suggest altered sympathetic circuitry in type 1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Neuronas GABAérgicas/fisiología , Potenciales Postsinápticos Inhibidores , Núcleo Hipotalámico Paraventricular/fisiopatología , Animales , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Riñón/inervación , Masculino , Ratones , Potenciales Postsinápticos Miniatura , Núcleo Hipotalámico Paraventricular/citología
13.
Auton Neurosci ; 245: 103058, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538864

RESUMEN

Brown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined. In this study, we used pseudorabies virus (PRV) to identify iBAT-related neurons in the paraventricular nucleus (PVN) of the hypothalamus and test the hypothesis that iBAT-related PVN neurons are modulated by leptin. Inoculation of iBAT with PRV in leptin receptor reporter mice (Lepr:EGFP) demonstrated that a population of iBAT-related PVN neurons expresses Lepr receptors. Our electrophysiological findings revealed that leptin application caused hyperpolarization in some of iBAT-related PVN neurons. Bath application of leptin also modulated excitatory and inhibitory neurotransmission to most of iBAT-related PVN neurons. Using channel rhodopsin assisted circuit mapping we found that GABAergic and glutamatergic Lepr-expressing neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA) project to PVN neurons; however, connected iBAT-related PVN neurons receive exclusively inhibitory signals from Lepr-expressing dDMH/DHA neurons.


Asunto(s)
Leptina , Núcleo Hipotalámico Paraventricular , Ratones , Animales , Leptina/metabolismo , Leptina/farmacología , Receptores de Leptina , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/fisiología , Hipotálamo/metabolismo , Neuronas/metabolismo , Termogénesis/fisiología , Sistema Nervioso Simpático/fisiología
14.
Sci Rep ; 13(1): 6998, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117484

RESUMEN

Various risk factors of Alzheimer's disease (AD) are known, such as advanced age, possession of certain genetic variants, accumulation of toxic amyloid-ß (Aß) peptides, and unhealthy lifestyle. An estimate of heritability of AD ranges from 0.13 to 0.25, indicating that its phenotypic variation is accounted for mostly by non-genetic factors. DNA methylation is regarded as an epigenetic mechanism that interfaces the genome with non-genetic factors. The Tg2576 mouse model has been insightful in AD research. These transgenic mice express a mutant form of human amyloid precursor protein linked to familial AD. At 9-13 months of age, these mice show elevated levels of Aß peptides and cognitive impairment. The current literature lacks integrative multiomics of the animal model. We applied transcriptomics and DNA methylomics to the same brain samples from ~ 11-month-old transgenic mice. We found that genes involved in extracellular matrix structures and functions are transcriptionally upregulated, and genes involved in extracellular protein secretion and localization are differentially methylated in the transgenic mice. Integrative analysis found enrichment of GO terms related to memory and synaptic functionability. Our results indicate a possibility of transcriptional modulation by DNA methylation underlying AD neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Lactante , Enfermedad de Alzheimer/metabolismo , Regulación hacia Arriba , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Encéfalo/metabolismo , Modelos Animales de Enfermedad
15.
Cells ; 12(8)2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37190103

RESUMEN

Stimulation of hepatic sympathetic nerves increases glucose production and glycogenolysis. Activity of pre-sympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral and ventromedial medulla (VLM/VMM) largely influence the sympathetic output. Increased activity of the sympathetic nervous system (SNS) plays a role in the development and progression of metabolic diseases; however, despite the importance of the central circuits, the excitability of pre-sympathetic liver-related neurons remains to be determined. Here, we tested the hypothesis that the activity of liver-related neurons in the PVN and VLM/VMM is altered in diet-induced obese mice, as well as their response to insulin. Patch-clamp recordings were conducted from liver-related PVN neurons, VLM-projecting PVN neurons, and pre-sympathetic liver-related neurons in the ventral brainstem. Our data demonstrate that the excitability of liver-related PVN neurons increased in high-fat diet (HFD)-fed mice compared to mice fed with control diet. Insulin receptor expression was detected in a population of liver-related neurons, and insulin suppressed the firing activity of liver-related PVN and pre-sympathetic VLM/VMM neurons in HFD mice; however, it did not affect VLM-projecting liver-related PVN neurons. These findings further suggest that HFD alters the excitability of pre-autonomic neurons as well as their response to insulin.


Asunto(s)
Dieta Alta en Grasa , Insulinas , Ratones , Animales , Neuronas/metabolismo , Hígado , Encéfalo , Insulinas/metabolismo
16.
J Neurosci ; 31(39): 14024-31, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21957263

RESUMEN

Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication restored TRPV1-dependent modulation of glutamate release in a PKC- and PI3K-dependent manner. The restorative effect of insulin was prevented by brefeldin A, suggesting that insulin induced TRPV1 receptor trafficking to the terminal membrane. Central vagal circuits critical to the autonomic regulation of metabolism undergo insulin-dependent synaptic plasticity involving TRPV1 receptor modulation in diabetic mice after several days of chronic hyperglycemia.


Asunto(s)
Tronco Encefálico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Canales Catiónicos TRPV/fisiología , Nervio Vago/fisiología , Animales , Tronco Encefálico/fisiología , Diabetes Mellitus Experimental/fisiopatología , Regulación hacia Abajo/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Insulina/fisiología , Masculino , Ratones , Ratones Obesos , Neuronas Motoras/fisiología , Red Nerviosa/fisiopatología , Sistema Nervioso Parasimpático/citología , Sistema Nervioso Parasimpático/fisiología , Canales Catiónicos TRPV/antagonistas & inhibidores
17.
Am J Physiol Renal Physiol ; 303(1): F105-9, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22442212

RESUMEN

Increased dietary salt triggers oxidative stress and kidney injury in salt-sensitive hypertension; however, the mechanism for sensing increased extracellular Na(+) concentration ([Na(+)]) remains unclear. A Na(+)-activated Na(+) channel (Na sensor) described in the brain operates as a sensor of extracellular fluid [Na(+)]; nonetheless, its presence in the kidney has not been established. In the present study, we demonstrated the gene expression of the Na sensor by RT-PCR and Western blotting in the Sprague-Dawley rat kidney. Using immunofluorescence, the Na sensor was localized to the luminal side in tubular epithelial cells of collecting ducts colocalizing with aquaporin-2, a marker of principal cells, and in thick ascending limb, colocalizing with the glycoprotein Tamm-Horsfall. To determine the effect of a high-salt diet (HSD) on Na sensor gene expression, we quantified its transcript and protein levels primarily in renal medullas from control rats and rats subjected to 8% NaCl for 7 days (n = 5). HSD increased Na sensor expression levels (mRNA: from 1.2 ± 0.2 to 5.1 ± 1.3 au; protein: from 0.98 ± 0.15 to 1.74 ± 0.28 au P < 0.05) in the kidney medulla, but not in the cortex. These data indicate that rat kidney epithelial cells of the thick ascending limb and principal cells of the collecting duct possess a Na sensor that is upregulated by HSD, suggesting an important role in monitoring changes in tubular fluid [Na(+)].


Asunto(s)
Células Epiteliales/metabolismo , Riñón/metabolismo , Canales de Sodio/metabolismo , Cloruro de Sodio Dietético/administración & dosificación , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Células Epiteliales/efectos de los fármacos , Expresión Génica , Riñón/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Canales de Sodio/genética , Regulación hacia Arriba
18.
J Pharmacol Sci ; 119(4): 314-23, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22850612

RESUMEN

Urinary excretion of albumin (UAlb) is used clinically as a marker of diabetic nephropathy (DN). Although DN was thought to be a unidirectional process, recent studies demonstrated that a large proportion of patients diagnosed with DN reverted to normoalbuminuria. Moreover, despite the normoalbuminuria, one-third of them exhibited reduced renal function even during the microalbuminuric stage. This study was performed to investigate whether urinary angiotensinogen (UAGT) level may serve as a useful marker of the early stage of experimental type 1 diabetes (T1DM). T1DM was induced by a single intraperitoneal injection of streptozotocin. Control mice were injected with citrate buffer. Two days after streptozotocin injection, half of the mice received continuous insulin treatment. Our data showed that UAlb excretion was increased 6 days after streptozotocin injection compared to controls, whereas UAGT excretion was increased at an earlier time point. These increases were reversed by insulin treatment. The UAGT to UAlb ratio was increased in diabetic mice compared to control mice. Furthermore, the increased AGT expression in the kidneys was observed in diabetic mice. These data suggest that UAGT might be useful as a novel early biomarker of activation of the renin-angiotensin system in experimental type 1 diabetes.


Asunto(s)
Angiotensinógeno/orina , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Sistema Renina-Angiotensina/fisiología , Albuminuria/etiología , Animales , Biomarcadores/orina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Masculino , Ratones
20.
Biochim Biophys Acta ; 1792(5): 423-31, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19110053

RESUMEN

Regulation of energy metabolism is controlled by the brain, in which key central neuronal circuits process a variety of information reflecting nutritional state. Special sensory and gastrointestinal afferent neural signals, along with blood-borne metabolic signals, impinge on parallel central autonomic circuits located in the brainstem and hypothalamus to signal changes in metabolic balance. Specifically, neural and humoral signals converge on the brainstem vagal system and similar signals concentrate in the hypothalamus, with significant overlap between both sensory and motor components of each system and extensive cross-talk between the systems. This ultimately results in production of coordinated regulatory autonomic and neuroendocrine cues to maintain energy homeostasis. Therapeutic metabolic adjustments can be accomplished by modulating viscerosensory input or autonomic motor output, including altering parasympathetic circuitry related to GI, pancreas, and liver regulation. These alterations can include pharmacological manipulation, but surgical modification of neural signaling should also be considered. In addition, central control of visceral function is often compromised by diabetes mellitus, indicating that circuit modification should be studied in the context of its effect on neurons in the diabetic state. Diabetes has traditionally been handled as a peripheral metabolic disease, but the central nervous system plays a crucial role in regulating glucose homeostasis. This review focuses on key autonomic brain areas associated with management of energy homeostasis and functional changes in these areas associated with the development of diabetes.


Asunto(s)
Vías Autónomas/fisiopatología , Encéfalo/metabolismo , Diabetes Mellitus/metabolismo , Sistemas Neurosecretores/metabolismo , Animales , Glucemia/metabolismo , Encéfalo/fisiopatología , Diabetes Mellitus/fisiopatología , Ghrelina/metabolismo , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Insulina/metabolismo , Leptina/metabolismo , Plasticidad Neuronal , Neuronas/fisiología , Sistemas Neurosecretores/fisiopatología , Canales de Potasio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA