RESUMEN
This study analyzed and compared the physicochemical and mechanical properties of preheated resin composite with light-cured resin cement for luting indirect restorations. 210 specimens of resin cement/resin composite were prepared according to preheating treatment heated (Htd) or not (NHtd). Light-cured resin cement (Variolink Veneer, Ivoclar), and resin composite (Microhybrid-Z100, 3 M; Nanohybrid-Empress direct, Ivoclar; and Bulk fill-Filtek One, 3 M) were used (n = 10). Resin cement specimens were not preheated. The response variables were (n = 10): film thickness, microhardness, liquid sorption and solubility. Data were analyzed by 2-way ANOVA and Tukey HSD post-test (α = 0.05). Bulk fill NHtd resin had the highest film thickness values (p < 0.001). Microhybrid and nanohybrid Htd resins had the smallest thicknesses and did not differ from the cement (p > 0.05). The highest microhardness values were found for Bulk fill NHtd and Bulk fill Htd resins. The nanohybrid and microhybrid Htd resins showed the lowest microhardness values, with no difference in cement (p > 0.05). For liquid sorption, there was no significant difference between the groups (p = 0.1941). The microhybrid Htd resin showed higher solubility values than the other materials (p = 0.0023), but it did not differ statistically from resin cement (p > 0.05). Preheating composite resins reduced the film thickness. After heating, nanohybrid and Bulk fill resins retained stable microhardness, sorption, and solubility values.