Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(29): 5987-5998, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38989906

RESUMEN

Herein we report a study on the sequential substitution of different nucleophiles on cyanuric chloride to obtain potential candidates for metal sensors (5a-c). The set of nucleophiles on the 1,3,5-triazine ring includes a phenolic BODIPY, an aminoalkyl pyridine and aminoalkyl phosphoramidates, each one designed to play a specific role in the final fluoroionophore. Three new triazine triads were synthesized in similar yields: 5a (45%), 5b (43%) and 5c (52%) after a methodical sequential combination of the nucleophiles via thermodependent nucleophilic aromatic substitution of the three chlorine atoms of cyanuric chloride. To ratify the synthetic results we simulated the reaction mechanisms for the different nucleophiles, aiming to address the distinctive orthogonality and temperature control inherent in this process, identifying and providing a sound rationale for any preferential sequence of nucleophiles inserted into the triazine core. According to our experimental and computational analysis (thermo- and kinetic preferences), we have identified the following preferential order for the sequential substitution: p-hydroxybenzaldehyde > 2-(pyridin-2-yl)ethanamine > aminoalkyl phosphoramidate, indicating that all steps follow a single-step process (concerted) in two stages, where nucleophilic addition precedes leaving group dissociation. The Meisenheimer σ-complex was identified as a transition state structure, with insufficient stability to exist as an intermediate. We observed a consistent and progressive increase in barrier height: 2-8 kcal mol-1 for the first step, 9-15 kcal mol-1 for the second step, and >15 kcal mol-1 for the third substitution. These findings align with the experimental observation of thermodependency in the sequential substitution.

2.
RSC Adv ; 14(7): 4692-4701, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38318615

RESUMEN

Nucleophilic substitution at saturated carbon is a crucial class of organic reactions, playing a pivotal role in various chemical transformations that yield valuable compounds for society. Despite the well-established SN1 and SN2 mechanisms, secondary substrates, particularly in solvolysis reactions, often exhibit a borderline pathway. A molecular-level understanding of these processes is fundamental for developing more efficient chemical transformations. Typically, quantum-chemical simulations of the solvent medium combine explicit and implicit solvation methods. The configuration of explicit molecules can be defined through top-down approaches, such as Monte Carlo (MC) calculations for generating initial configurations, and bottom-up methods that involve user-dependent protocols to add solvent molecules around the substrate. Herein, we investigated the borderline mechanism of the hydrolysis of a secondary substrate, isopropyl chloride (iPrCl), at DFT-M06-2X/aug-cc-pVDZ level, employing explicit and explicit + implicit protocols. Top-down and bottom-up approaches were employed to generate substrate-solvent complexes of varying number (n = 1, 3, 5, 7, 9, and 12) and configurations of H2O molecules. Our findings consistently reveal that regardless of the solvation approach, the hydrolysis of iPrCl follows a loose-SN2-like mechanism with nucleophilic solvent assistance. Increasing the water cluster around the substrate in most cases led to reaction barriers of ΔH‡ ≈ 21 kcal mol-1, with nine water molecules from MC configurations sufficient to describe the reaction. The More O'Ferrall-Jencks plot demonstrates an SN1-like character for all transition state structures, showing a clear merged profile. The fragmentation activation strain analyses indicate that energy barriers are predominantly controlled by solvent-substrate interactions, supported by the leaving group stabilization assessed through CHELPG atomic charges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA