Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 18441, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323840

RESUMEN

Teak wood has chemical compounds that can be used for pharmaceutical and textile industries, in addition, this compounds are related to resistance to biodeterioration, color and modification processes. Heartwood and sapwood of T. grandis (teak), 15 years-old, were characterized by Py-CG/MS analysis and syringyl (S)/guaiacyl (G) ratio was evaluated. Heartwood and sapwood were pyrolyzed at 550 °C and 62 and 51 compounds were identified from them, respectively. The acetic acid (10%) and levoglucosan (26.65%) were the most abundant compound in the sapwood and heartwood, respectively. The high acetic acid content enhances the use of teak wood to production of artificial essences for perfumery, paints, dyes. While levoglucosan can be used in the manufacture of epoxy resins, antiparasitic and insecticides. The organic compounds identified include 2-methylanthraquinone as one of the main component responsible for the resistance of the teak wood to biological factors (fungi and termites). The syringyl (S)/guaiacyl (G) ratio of heartwood and sapwood was 0.51 and 0.50, respectively.


Asunto(s)
Lamiaceae , Lamiaceae/química , Madera/química , Hongos
2.
Sci Rep ; 11(1): 4899, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649387

RESUMEN

The use of wood panel residues as biomass for energy production is feasible. Heat treatments can improve energy properties while minimizing the emission of toxic gases due to thermoset polymers used in Medium Density Fiberboard (MDF) panels. Torrefaction or pre-carbonization, a heat treatment between 200 and 300 °C with low oxygen availability accumulates carbon and lignin, decreases hygroscopicity, and increases energy efficiency. The objective of this work was to evaluate the energy parameters (immediate, structural, and elementary chemical composition, moisture content, and yield) and density in torrefied MDF panels. The torrefaction improved the energetic features of coated MDF, decreasing the moisture content, volatile matter, and consequently, concentrating the carbon with better results in the samples torrefied for 40 min. The densitometric profiles of the torrefied MDF, obtained by X-ray densitometry, showed a decrease in the apparent density as torrefaction time increased. The digital X-ray images in gray and rainbow scale enabled the most detailed study of the density variation of MDF residues.

3.
Sci Rep ; 11(1): 900, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441628

RESUMEN

Pellets are widely used for power generation because they use renewable raw material with easy storage, transport and high energy density. However, the structural fragility, disintegrating during handling, transport and storage, is one of the main problems of pellets, but the addition of binders/additives can minimize this fragility. The objective of this study was to evaluate the properties of wood pellets with the addition of starch (corn and wheat) and kraft lignin in different proportions. Pellets were produced with the addition of starch (wheat and corn) and kraft lignin in the proportions of 1, 2, 3, 4 and 5% in relation to the mass of wood particles of Pinus sp., with 12% moisture (dry basis), classified in 3 and 1 mm sieves and compacted in a pelleting press in the laboratory, according to European standard EN 14961-2. Physical and mechanical properties of the pellets were evaluated and their densitometric profiles obtained from the Faxitron LX-60 X-ray equipment. Corn starch and kraft lignin additives at 4% improved pellet properties (density, fines and hardness), reducing their losses during handling, storage and transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA