Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 60(1): 65-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34872991

RESUMEN

BACKGROUND: Large-scale mitochondrial DNA deletions (LMD) are a common genetic cause of mitochondrial disease and give rise to a wide range of clinical features. Lack of longitudinal data means the natural history remains unclear. This study was undertaken to describe the clinical spectrum in a large cohort of patients with paediatric disease onset. METHODS: A retrospective multicentre study was performed in patients with clinical onset <16 years of age, diagnosed and followed in seven European mitochondrial disease centres. RESULTS: A total of 80 patients were included. The average age at disease onset and at last examination was 10 and 31 years, respectively. The median time from disease onset to death was 11.5 years. Pearson syndrome was present in 21%, Kearns-Sayre syndrome spectrum disorder in 50% and progressive external ophthalmoplegia in 29% of patients. Haematological abnormalities were the hallmark of the disease in preschool children, while the most common presentations in older patients were ptosis and external ophthalmoplegia. Skeletal muscle involvement was found in 65% and exercise intolerance in 25% of the patients. Central nervous system involvement was frequent, with variable presence of ataxia (40%), cognitive involvement (36%) and stroke-like episodes (9%). Other common features were pigmentary retinopathy (46%), short stature (42%), hearing impairment (39%), cardiac disease (39%), diabetes mellitus (25%) and renal disease (19%). CONCLUSION: Our study provides new insights into the phenotypic spectrum of childhood-onset, LMD-associated syndromes. We found a wider spectrum of more prevalent multisystem involvement compared with previous studies, most likely related to a longer time of follow-up.


Asunto(s)
Síndrome de Kearns-Sayre , Enfermedades Musculares , Oftalmoplejía Externa Progresiva Crónica , Preescolar , Humanos , Niño , Anciano , ADN Mitocondrial/genética , Síndrome de Kearns-Sayre/epidemiología , Síndrome de Kearns-Sayre/genética , Oftalmoplejía Externa Progresiva Crónica/epidemiología , Oftalmoplejía Externa Progresiva Crónica/genética , Enfermedades Musculares/genética , Progresión de la Enfermedad
2.
Exp Eye Res ; 232: 109500, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37178956

RESUMEN

Primary open-angle glaucoma (POAG) is characterized by optic nerve degeneration and irreversible loss of retinal ganglion cells (RGCs). The pathophysiology is not fully understood. Since RGCs have a high energy demand, suboptimal mitochondrial function may put the survival of these neurons at risk. In the present study, we explored whether mtDNA copy number or mtDNA deletions could reveal a mitochondrial component in POAG pathophysiology. Buffy coat DNA was isolated from EDTA blood of age- and sex-matched study groups, namely POAG patients with high intraocular pressure (IOP) at diagnosis (high tension glaucoma: HTG; n = 97), normal tension glaucoma patients (NTG, n = 37), ocular hypertensive controls (n = 9), and cataract controls (without glaucoma; n = 32), all without remarkable comorbidities. The number of mtDNA copies was assessed through qPCR quantification of the mitochondrial D-loop and nuclear B2M gene. Presence of the common 4977 base pair mtDNA deletion was assessed by a highly sensitive breakpoint PCR. Analysis showed that HTG patients had a lower number of mtDNA copies per nuclear DNA than NTG patients (p-value <0.01, Dunn test) and controls (p-value <0.001, Dunn test). The common 4977 base pair mtDNA deletion was not detected in any of the participants. A lower mtDNA copy number in blood of HTG patients suggests a role for a genetically defined, deficient mtDNA replication in the pathology of HTG. This may cause a low number of mtDNA copies in RGCs, which together with aging and high IOP, may lead to mitochondrial dysfunction, and contribute to glaucoma pathology.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Glaucoma de Baja Tensión , Humanos , Glaucoma de Ángulo Abierto/diagnóstico , ADN Mitocondrial/genética , Variaciones en el Número de Copia de ADN , Presión Intraocular , Glaucoma de Baja Tensión/genética , Mitocondrias/genética
4.
PLoS Genet ; 13(5): e1006809, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28542170

RESUMEN

Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes. Three unrelated individuals of Dutch ancestry showed the same homozygous truncating INTS1 mutation. Three siblings harboured compound heterozygous INTS8 mutations. Shared features by these six individuals are severe neurodevelopmental delay and a distinctive appearance. The INTS8 family in addition presented with neuronal migration defects (periventricular nodular heterotopia). We show that the first INTS8 mutation, a nine base-pair deletion, leads to a protein that disrupts INT complex stability, while the second missense mutation introduces an alternative splice site leading to an unstable messenger. Cells from patients with INTS8 mutations show increased levels of unprocessed UsnRNA, compatible with the INT function in the 3'-end maturation of UsnRNA, and display significant disruptions in gene expression and RNA processing. Finally, the introduction of the INTS8 deletion mutation in P19 cells using genome editing alters gene expression throughout the course of retinoic acid-induced neural differentiation. Altogether, our results confirm the essential role of Integrator to transcriptome integrity and point to the requirement of the Integrator complex in human brain development.


Asunto(s)
Discapacidades del Desarrollo/genética , Eliminación de Gen , Mutación Missense , Subunidades de Proteína/genética , ARN Mensajero/metabolismo , Adulto , Empalme Alternativo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Niño , Discapacidades del Desarrollo/diagnóstico , Femenino , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Masculino , Mutación , Linaje , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , Síndrome , Transcriptoma , Proteína Wnt1
5.
J Med Genet ; 55(1): 21-27, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101127

RESUMEN

BACKGROUND: Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. OBJECTIVE: We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. METHODS: We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. RESULTS: We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m.8993T>G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m.8993T>C mutation. CONCLUSION: Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase.


Asunto(s)
Estudios de Asociación Genética , Enfermedad de Leigh/genética , Núcleo Celular/metabolismo , ADN/genética , ADN Mitocondrial/genética , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Mutación/genética , Fenotipo
6.
J Med Genet ; 54(2): 73-83, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27450679

RESUMEN

BACKGROUND: Severe, disease-causing germline mitochondrial (mt)DNA mutations are maternally inherited or arise de novo. Strategies to prevent transmission are generally available, but depend on recurrence risks, ranging from high/unpredictable for many familial mtDNA point mutations to very low for sporadic, large-scale single mtDNA deletions. Comprehensive data are lacking for de novo mtDNA point mutations, often leading to misconceptions and incorrect counselling regarding recurrence risk and reproductive options. We aim to study the relevance and recurrence risk of apparently de novo mtDNA point mutations. METHODS: Systematic study of prenatal diagnosis (PND) and recurrence of mtDNA point mutations in families with de novo cases, including new and published data. 'De novo' based on the absence of the mutation in multiple (postmitotic) maternal tissues is preferred, but mutations absent in maternal blood only were also included. RESULTS: In our series of 105 index patients (33 children and 72 adults) with (likely) pathogenic mtDNA point mutations, the de novo frequency was 24.6%, the majority being paediatric. PND was performed in subsequent pregnancies of mothers of four de novo cases. A fifth mother opted for preimplantation genetic diagnosis because of a coexisting Mendelian genetic disorder. The mtDNA mutation was absent in all four prenatal samples and all 11 oocytes/embryos tested. A literature survey revealed 137 de novo cases, but PND was only performed for 9 (including 1 unpublished) mothers. In one, recurrence occurred in two subsequent pregnancies, presumably due to germline mosaicism. CONCLUSIONS: De novo mtDNA point mutations are a common cause of mtDNA disease. Recurrence risk is low. This is relevant for genetic counselling, particularly for reproductive options. PND can be offered for reassurance.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Genéticas Congénitas/diagnóstico , Herencia Materna/genética , Diagnóstico Prenatal , Adulto , Niño , Femenino , Asesoramiento Genético , Humanos , Masculino , Oocitos/metabolismo , Mutación Puntual/genética , Embarazo , Diagnóstico Preimplantación
7.
J Pediatr ; 182: 371-374.e2, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28081892

RESUMEN

Whole-exome sequencing identified multiple genetic causes in 2 infants with heterogeneous disease. Three gene defects in the first patient explained all symptoms, but manifestations were overlapping (blended phenotype). Two gene defects in the second patient explained nonoverlapping symptoms (composite phenotype). Whole-exome sequencing rapidly and comprehensively resolves heterogeneous genetic disease.


Asunto(s)
Anomalías Congénitas/genética , Enfermedades Genéticas Congénitas/diagnóstico , Mutación , Análisis de Secuencia de ADN/métodos , Amidohidrolasas/genética , Hidrolasas de Éster Carboxílico/genética , Anomalías Congénitas/diagnóstico , Exoma/genética , Pruebas Genéticas/métodos , Genómica , Genotipo , Humanos , Lactante , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos , Pruebas de Mutagenicidad , Fenotipo , Receptores de Péptidos/genética , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
8.
Am J Physiol Regul Integr Comp Physiol ; 312(5): R689-R701, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179228

RESUMEN

Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min-1·kg body wt-1, maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt-1·day-1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested.


Asunto(s)
Ejercicio Físico , Mitocondrias Musculares/metabolismo , Miopatías Mitocondriales/tratamiento farmacológico , Miopatías Mitocondriales/fisiopatología , Nitratos/administración & dosificación , Consumo de Oxígeno/efectos de los fármacos , Administración Oral , Adulto , Anciano , Tolerancia al Ejercicio/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Resultado del Tratamiento , Adulto Joven
9.
Am J Hum Genet ; 92(5): 774-80, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23643384

RESUMEN

Inherited white-matter disorders are a broad class of diseases for which treatment and classification are both challenging. Indeed, nearly half of the children presenting with a leukoencephalopathy remain without a specific diagnosis. Here, we report on the application of high-throughput genome and exome sequencing to a cohort of ten individuals with a leukoencephalopathy of unknown etiology and clinically characterized by hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL), as well as the identification of compound-heterozygous and homozygous mutations in cytoplasmic aspartyl-tRNA synthetase (DARS). These mutations cause nonsynonymous changes to seven highly conserved amino acids, five of which are unchanged between yeast and man, in the DARS C-terminal lobe adjacent to, or within, the active-site pocket. Intriguingly, HBSL bears a striking resemblance to leukoencephalopathy with brain stem and spinal cord involvement and elevated lactate (LBSL), which is caused by mutations in the mitochondria-specific DARS2, suggesting that these two diseases might share a common underlying molecular pathology. These findings add to the growing body of evidence that mutations in tRNA synthetases can cause a broad range of neurologic disorders.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Modelos Moleculares , Espasticidad Muscular/genética , Conformación Proteica , Aspartato-ARNt Ligasa/química , Tronco Encefálico/patología , Cristalografía por Rayos X , Humanos , Pierna/patología , Leucoencefalopatías/patología , Mutación/genética , Médula Espinal/patología
10.
Brain ; 138(Pt 10): 2847-58, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26264513

RESUMEN

Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known patients suffering from mitochondrial neurogastrointestinal encephalomyopathy who underwent allogeneic haematopoietic stem cell transplantation between 2005 and 2011. Twenty-four patients, 11 males and 13 females, median age 25 years (range 10-41 years) treated with haematopoietic stem cell transplantation from related (n = 9) or unrelated donors (n = 15) in 15 institutions worldwide were analysed for outcome and its associated factors. Overall, 9 of 24 patients (37.5%) were alive at last follow-up with a median follow-up of these surviving patients of 1430 days. Deaths were attributed to transplant in nine (including two after a second transplant due to graft failure), and to mitochondrial neurogastrointestinal encephalomyopathy in six patients. Thymidine phosphorylase activity rose from undetectable to normal levels (median 697 nmol/h/mg protein, range 262-1285) in all survivors. Seven patients (29%) who were engrafted and living more than 2 years after transplantation, showed improvement of body mass index, gastrointestinal manifestations, and peripheral neuropathy. Univariate statistical analysis demonstrated that survival was associated with two defined pre-transplant characteristics: human leukocyte antigen match (10/10 versus <10/10) and disease characteristics (liver disease, history of gastrointestinal pseudo-obstruction or both). Allogeneic haematopoietic stem cell transplantation can restore thymidine phosphorylase enzyme function in patients with mitochondrial neurogastrointestinal encephalomyopathy and improve clinical manifestations of mitochondrial neurogastrointestinal encephalomyopathy in the long term. Allogeneic haematopoietic stem cell transplantation should be considered for selected patients with an optimal donor.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Seudoobstrucción Intestinal/cirugía , Encefalomiopatías Mitocondriales/cirugía , Resultado del Tratamiento , Adolescente , Adulto , Peso Corporal , Encéfalo/patología , Niño , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Distrofia Muscular Oculofaríngea , Conducción Nerviosa/fisiología , Examen Neurológico , Neutrófilos , Oftalmoplejía/congénito , Estudios Retrospectivos , Análisis de Supervivencia , Timidina Fosforilasa/metabolismo , Trasplante Homólogo/métodos , Adulto Joven
11.
Am J Hum Genet ; 91(3): 533-40, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22939636

RESUMEN

Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals.


Asunto(s)
Proteínas Portadoras/genética , Corteza Cerebral/embriología , Corteza Cerebral/fisiología , Cilios/fisiología , Malformaciones del Desarrollo Cortical/genética , Adolescente , Proteínas de Ciclo Celular , Línea Celular , Niño , Femenino , Técnicas de Inactivación de Genes , Genes Recesivos , Humanos , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico , Mutación
12.
Am J Med Genet A ; 161A(9): 2376-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23873601

RESUMEN

Mutations in FLNA (Filamin A, OMIM 300017) cause X-linked periventricular nodular heterotopia (XL-PNH). XL-PNH-associated mutations are considered lethal in hemizygous males. However, a few males with unusual mutations (including distal truncating and hypomorphic missense mutations), and somatic mosaicism have been reported to survive past infancy. Two brothers had an atypical presentation with failure to thrive and distinct facial appearance including hypertelorism. Evaluations of these brothers and their affected cousin showed systemic involvement including severe intestinal malfunction, malrotation, congenital short bowel, PNH, pyloric stenosis, wandering spleen, patent ductus arteriosus, atrial septal defect, inguinal hernia, and vesicoureteral reflux. The unanticipated finding of PNH led to FLNA testing and subsequent identification of a novel no-stop FLNA mutation (c.7941_7942delCT, p.(*2648Serext*100)). Western blotting and qRT-PCR of patients' fibroblasts showed diminished levels of protein and mRNA. This FLNA mutation, the most distal reported so far, causes in females classical XL-PNH, but in males an unusual, multi-organ phenotype, providing a unique insight into the FLNA-associated phenotypes.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Filaminas/genética , Mutación Missense , Secuencia de Bases , Encéfalo/patología , Facies , Femenino , Genotipo , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Linaje , Heterotopia Nodular Periventricular/diagnóstico , Heterotopia Nodular Periventricular/genética , Fenotipo , Radiografía , Bazo/diagnóstico por imagen , Bazo/patología
13.
Eur J Med Genet ; 66(6): 104746, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36967043

RESUMEN

Phelan-McDermid syndrome (PMS) is a 22q13.3 deletion syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities like seizures. The epilepsy manifests itself in a variety of seizure semiologies. Further diagnostics using electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) are important in conjunction with the clinical picture of the seizures to decide whether anticonvulsant therapy is necessary. As part of the development of European consensus guidelines we focussed on the prevalence and semiology of epileptic seizures in PMS associated with a pathogenic variant in the SHANK3 gene or the 22q13 deletion involving SHANK3, in order to then be able to make recommendations regarding diagnosis and therapy.


Asunto(s)
Trastornos de los Cromosomas , Epilepsia , Humanos , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Deleción Cromosómica , Epilepsia/diagnóstico , Epilepsia/genética , Convulsiones/genética , Cromosomas Humanos Par 22/genética
14.
Am J Hum Genet ; 85(1): 40-52, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19559397

RESUMEN

Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G-->T), was identified. AP4M1, encoding for the mu subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRdelta2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/genética , Parálisis Cerebral/genética , Encéfalo/patología , Línea Celular , Células Cultivadas , Parálisis Cerebral/patología , Parálisis Cerebral/fisiopatología , Femenino , Fibroblastos/patología , Genes Recesivos , Humanos , Masculino , Linaje , Cuadriplejía/genética , Cuadriplejía/fisiopatología , Adulto Joven
15.
Brain ; 134(Pt 1): 210-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20929961

RESUMEN

Mitochondrial complex I deficiency is the most common oxidative phosphorylation defect. Mutations have been detected in mitochondrial and nuclear genes, but the genetics of many patients remain unresolved and new genes are probably involved. In a consanguineous family, patients presented easy fatigability, exercise intolerance and lactic acidosis in blood from early childhood. In muscle, subsarcolemmal mitochondrial proliferation and a severe complex I deficiency were observed. Exercise intolerance and complex I activity was improved by a supplement of riboflavin at high dosage. Homozygosity mapping revealed a candidate region on chromosome three containing six mitochondria-related genes. Four genes were screened for mutations and a homozygous substitution was identified in ACAD9 (c.1594 C>T), changing the highly conserved arginine-532 into tryptophan. This mutation was absent in 188 ethnically matched controls. Protein modelling suggested a functional effect due to the loss of a stabilizing hydrogen bond in an α-helix and a local flexibility change. To test whether the ACAD9 mutation caused the complex I deficiency, we transduced fibroblasts of patients with wild-type and mutant ACAD9. Wild-type, but not mutant, ACAD9 restored complex I activity. An unrelated patient with the same phenotype was compound heterozygous for c.380 G>A and c.1405 C>T, changing arginine-127 into glutamine and arginine-469 into tryptophan, respectively. These amino acids were highly conserved and the substitutions were not present in controls, making them very probably pathogenic. Our data support a new function for ACAD9 in complex I function, making this gene an important new candidate for patients with complex I deficiency, which could be improved by riboflavin treatment.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Mitocondrias/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Riboflavina/uso terapéutico , Complejo I de Transporte de Electrón/genética , Ejercicio Físico , Genotipo , Homocigoto , Humanos , Mutación , Linaje , Fenotipo
16.
Brain Commun ; 4(1): fcac024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187487

RESUMEN

Mutations of the mitochondrial DNA are an important cause of inherited diseases that can severely affect the tissue's homeostasis and integrity. The m.3243A > G mutation is the most commonly observed across mitochondrial disorders and is linked to multisystemic complications, including cognitive deficits. In line with in vitro experiments demonstrating the m.3243A > G's negative impact on neuronal energy production and integrity, m.3243A > G patients show cerebral grey matter tissue changes. However, its impact on the most neuron dense, and therefore energy-consuming brain structure-the cerebellum-remains elusive. In this work, we used high-resolution structural and functional data acquired using 7 T MRI to characterize the neurodegenerative and functional signatures of the cerebellar cortex in m.3243A > G patients. Our results reveal altered tissue integrity within distinct clusters across the cerebellar cortex, apparent by their significantly reduced volume and longitudinal relaxation rate compared with healthy controls, indicating macroscopic atrophy and microstructural pathology. Spatial characterization reveals that these changes occur especially in regions related to the frontoparietal brain network that is involved in information processing and selective attention. In addition, based on resting-state functional MRI data, these clusters exhibit reduced functional connectivity to frontal and parietal cortical regions, especially in patients characterized by (i) a severe disease phenotype and (ii) reduced information-processing speed and attention control. Combined with our previous work, these results provide insight into the neuropathological changes and a solid base to guide longitudinal studies aimed to track disease progression.

17.
Biochim Biophys Acta ; 1797(2): 197-203, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19836344

RESUMEN

Ninety-five percent of Leber hereditary optic neuropathy (LHON) patients carry a mutation in one out of three mtDNA-encoded ND subunits of complex I. Penetrance is reduced and more male than female carriers are affected. To assess if a consistent biochemical phenotype is associated with LHON expression, complex I- and complex II-dependent adenosine triphosphate synthesis rates (CI-ATP, CII-ATP) were determined in digitonin-permeabilized peripheral blood mononuclear cells (PBMCs) of thirteen healthy controls and for each primary mutation of a minimum of three unrelated patients and of three unrelated carriers with normal vision and were normalized per mitochondrion (citrate synthase activity) or per cell (protein content). We found that in mitochondria, CI-ATP and CII-ATP were impaired irrespective of the primary LHON mutation and clinical expression. An increase in mitochondrial density per cell compensated for the dysfunctional mitochondria in LHON carriers but was insufficient to result in a normal biochemical phenotype in early-onset LHON patients.


Asunto(s)
Complejo II de Transporte de Electrones/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Mutación/genética , Atrofia Óptica Hereditaria de Leber/metabolismo , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Persona de Mediana Edad , Atrofia Óptica Hereditaria de Leber/genética , Protones , Adulto Joven
18.
Dev Med Child Neurol ; 53(5): 417-21, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21410694

RESUMEN

AIM: To evaluate survival, clinical, and genetic characteristics of all patients with classic or type 1 lissencephaly born between 1972 and 1990 in the Netherlands, who at the time were enrolled in an observational study. METHOD: We re-evaluated 24 patients (11 males, 13 females) for long-term follow-up and survival information. RESULTS: Mean length of follow-up was 14 years (SD 9 y 8 mo). Eleven patients were alive at follow-up. All patients showed severe intellectual disability, intractable epilepsy, and complete dependency on care. Life expectancy was related to the severity of the lissencephaly on neuroimaging. Molecular analysis of the LIS1 gene was not possible at the time of the original study and was now requested by eight parents. This revealed a pathogenic nonsense mutation or deletion in seven patients. INTERPRETATION: Our study provides information about the long-term course of lissencephaly and the relationship between lissencephaly severity and prognosis. It also shows that renewed attention to genetic counselling remains valued by families of patients with a severe congenital neurological disease.


Asunto(s)
Encéfalo/anomalías , Encéfalo/patología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/mortalidad , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Adulto , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico por imagen , Femenino , Humanos , Estudios Longitudinales , Masculino , Análisis de Supervivencia , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
19.
Neuromuscul Disord ; 31(9): 859-864, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34419324

RESUMEN

Whole exome sequencing (WES), analyzed with GENESIS and WeGET, revealed a homozygous deletion in the C1QBP gene in a patient with progressive external ophthalmoplegia (PEO) and multiple mtDNA deletions. The gene encodes the mitochondria-located complementary 1 Q subcomponent-binding protein, involved in mitochondrial homeostasis. Biallelic mutations in C1QBP cause mitochondrial cardiomyopathy and/or PEO with variable age of onset. Our patient showed only late-onset PEO-plus syndrome without overt cardiac involvement. Available data suggest that early-onset cardiomyopathy variants localize in important structural domains and PEO-plus variants in the coiled-coil region. Our patient demonstrates that C1QBP mutations should be considered in individuals with PEO with or without cardiomyopathy.


Asunto(s)
Proteínas Portadoras/genética , Secuenciación del Exoma , Proteínas Mitocondriales/genética , Oftalmoplejía Externa Progresiva Crónica/genética , Adulto , ADN Mitocondrial/genética , Femenino , Homocigoto , Humanos , Mitocondrias/genética , Mutación , Eliminación de Secuencia
20.
PLoS One ; 16(5): e0252630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34048486

RESUMEN

AIM: Recently, the level of growth differentiation factor 15 (GDF-15) in blood, was proposed as biomarker to detect mitochondrial dysfunction. In the current study, we evaluate this biomarker in open-angle glaucoma (OAG), as there is increasing evidence that mitochondrial dysfunction plays a role in the pathophysiology of this disease. METHODS: Plasma GDF-15 concentrations were measured with ELISA in 200 OAG patients and 61 age-matched controls (cataract without glaucoma). The OAG patient group consisted of high tension glaucoma (HTG; n = 162) and normal tension glaucoma (NTG; n = 38). Groups were compared using the Kruskal-Wallis nonparametric test with Dunn's multiple comparison post-hoc correction. GDF-15 concentration was corrected for confounders identified with forward linear regression models. RESULTS: Before correcting for confounders, median plasma GDF-15 levels was significantly lower in the combined OAG group (p = 0.04), but not when analysing HTG and NTG patients separately. Forward linear regression analysis showed that age, gender, smoking and systemic hypertension were significant confounders affecting GDF-15 levels. After correction for these confounders, GDF-15 levels in OAG patients were no longer significantly different from controls. Subgroup analysis of the glaucoma patients did not show a correlation between disease severity and plasma GDF-15, but did reveal that for NTG patients, intake of dietary supplements, which potentially improve mitochondrial function, correlated with lower plasma GDF-15. CONCLUSION: The present study suggests that plasma GDF-15 is not suited as biomarker of mitochondrial dysfunction in OAG patients.


Asunto(s)
Glaucoma de Ángulo Abierto/patología , Factor 15 de Diferenciación de Crecimiento/sangre , Anciano , Estudios de Casos y Controles , Femenino , Glaucoma de Ángulo Abierto/sangre , Humanos , Presión Intraocular , Estilo de Vida , Modelos Lineales , Glaucoma de Baja Tensión/sangre , Glaucoma de Baja Tensión/patología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA