Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Behav Res Methods ; 56(1): 290-300, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36595180

RESUMEN

Interval timing refers to the ability to perceive and remember intervals in the seconds to minutes range. Our contemporary understanding of interval timing is derived from relatively small-scale, isolated studies that investigate a limited range of intervals with a small sample size, usually based on a single task. Consequently, the conclusions drawn from individual studies are not readily generalizable to other tasks, conditions, and task parameters. The current paper presents a live database that presents raw data from interval timing studies (currently composed of 68 datasets from eight different tasks incorporating various interval and temporal order judgments) with an online graphical user interface to easily select, compile, and download the data organized in a standard format. The Timing Database aims to promote and cultivate key and novel analyses of our timing ability by making published and future datasets accessible as open-source resources for the entire research community. In the current paper, we showcase the use of the database by testing various core ideas based on data compiled across studies (i.e., temporal accuracy, scalar property, location of the point of subjective equality, malleability of timing precision). The Timing Database will serve as the repository for interval timing studies through the submission of new datasets.


Asunto(s)
Percepción del Tiempo , Humanos , Bases de Datos Factuales , Factores de Tiempo
2.
Psychol Sci ; 34(7): 822-833, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37260047

RESUMEN

Humans can adapt when complex patterns unfold at a faster or slower pace, for instance when remembering a grocery list that is dictated at an increasingly fast rate. Integrating information over such timescales crucially depends on working memory, but although recent findings have shown that working memory capacity can be flexibly adapted, such adaptations have not yet been demonstrated for encoding speed. In a series of experiments, we found that young adults encoded at a faster rate when they were adapted to overall and recent stimulus duration. Interestingly, our participants were unable to use explicit cues to speed up encoding, even though these cues were objectively more informative than statistical information. Our findings suggest that adaptive tuning of encoding speed in working memory is a fundamental but largely implicit mechanism underlying our ability to keep up with the pace of our surroundings.


Asunto(s)
Señales (Psicología) , Memoria a Corto Plazo , Adulto Joven , Humanos , Recuerdo Mental
3.
Heredity (Edinb) ; 130(3): 135-144, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639700

RESUMEN

European wildlife has been subjected to intensifying levels of anthropogenic impact throughout the Holocene, yet the main genetic partitioning of many species is thought to still reflect the late-Pleistocene glacial refugia. We analyzed 26,342 nuclear SNPs of 464 wild boar (Sus scrofa) across the European continent to infer demographic history and reassess the genetic consequences of natural and anthropogenic forces. We found that population fragmentation, inbreeding and recent hybridization with domestic pigs have caused the spatial genetic structure to be heterogeneous at the local scale. Underlying local anthropogenic signatures, we found a deep genetic structure in the form of an arch-shaped cline extending from the Dinaric Alps, via Southeastern Europe and the Baltic states, to Western Europe and, finally, to the genetically diverged Iberian peninsula. These findings indicate that, despite considerable anthropogenic influence, the deeper, natural continental structure is still intact. Regarding the glacial refugia, our findings show a weaker signal than generally assumed, but are nevertheless suggestive of two main recolonization routes, with important roles for Southern France and the Balkans. Our results highlight the importance of applying genomic resources and framing genetic results within a species' demographic history and geographic distribution for a better understanding of the complex mixture of underlying processes.


Asunto(s)
Variación Genética , Genoma , Animales , Porcinos , Europa (Continente) , Demografía , Sus scrofa/genética , Filogenia , ADN Mitocondrial/genética
4.
Neuropediatrics ; 54(3): 188-196, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36223876

RESUMEN

BACKGROUND: Focal cortical dysplasias (FCD) are a frequent cause of drug-resistant epilepsy in children but are often undetected on structural magnetic resonance imaging (MRI). We aimed to measure and validate the variation of resting state functional MRI (rs-fMRI) blood oxygenation level dependent (BOLD) metrics in surgically proven FCDs in children, to assess the potential yield for detecting and understanding these lesions. METHODS: We prospectively included pediatric patients with surgically proven FCD with inconclusive structural MRI and healthy controls, who underwent a ten-minute rs-fMRI acquired at 3T. Rs-fMRI data was pre-processed and maps of values of regional homogeneity (ReHo), degree centrality (DC), amplitude of low frequency fluctuations (ALFF) and fractional ALFF (fALFF) were calculated. The variations of BOLD metrics within the to-be-resected areas were analyzed visually, and quantitatively using lateralization indices. BOLD metrics variations were also analyzed in fluorodeoxyglucose-positron emission tomography (FDG-PET) hypometabolic areas. RESULTS: We included 7 patients (range: 3-15 years) and 6 aged-matched controls (range: 6-17 years). ReHo lateralization indices were positive in the to-be-resected areas in 4/7 patients, and in 6/7 patients in the additional PET hypometabolic areas. These indices were significantly higher compared to controls in 3/7 and 4/7 patients, respectively. Visual analysis revealed a good spatial correlation between high ReHo areas and MRI structural abnormalities (when present) or PET hypometabolic areas. No consistent variation was seen using DC, ALFF, or fALFF. CONCLUSION: Resting-state fMRI metrics, noticeably increase in ReHo, may have potential to help detect MRI-negative FCDs in combination with other morphological and functional techniques, used in clinical practice and epilepsy-surgery screening.


Asunto(s)
Epilepsia Refractaria , Displasia Cortical Focal , Humanos , Niño , Anciano , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Mapeo Encefálico/métodos
5.
Neuroimage ; 237: 118174, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000406

RESUMEN

Quality control of brain segmentation is a fundamental step to ensure data quality. Manual quality control strategies are the current gold standard, although these may be unfeasible for large neuroimaging samples. Several options for automated quality control have been proposed, providing potential time efficient and reproducible alternatives. However, those have never been compared side to side, which prevents consensus in the appropriate quality control strategy to use. This study aimed to elucidate the changes manual editing of brain segmentations produce in morphological estimates, and to analyze and compare the effects of different quality control strategies on the reduction of the measurement error. Structural brain MRI from 259 participants of The Maastricht Study were used. Morphological estimates were automatically extracted using FreeSurfer 6.0. Segmentations with inaccuracies were manually edited, and morphological estimates were compared before and after editing. In parallel, 12 quality control strategies were applied to the full sample. Those included: two manual strategies, in which images were visually inspected and either excluded or manually edited; five automated strategies, where outliers were excluded based on the tools "MRIQC" and "Qoala-T", and the metrics "morphological global measures", "Euler numbers" and "Contrast-to-Noise ratio"; and five semi-automated strategies, where the outliers detected through the mentioned tools and metrics were not excluded, but visually inspected and manually edited. In order to quantify the effects of each quality control strategy, the proportion of unexplained variance relative to the total variance was extracted after the application of each strategy, and the resulting differences compared. Manually editing brain surfaces produced particularly large changes in subcortical brain volumes and moderate changes in cortical surface area, thickness and hippocampal volumes. The performance of the quality control strategies depended on the morphological measure of interest. Overall, manual quality control strategies yielded the largest reduction in relative unexplained variance. The best performing automated alternatives were those based on Euler numbers and MRIQC scores. The exclusion of outliers based on global morphological measures produced an increase of relative unexplained variance. Manual quality control strategies are the most reliable solution for quality control of brain segmentation and parcellation. However, measures must be taken to prevent the subjectivity associated with these strategies. The detection of inaccurate segmentations based on Euler numbers or MRIQC provides a time efficient and reproducible alternative. The exclusion of outliers based on global morphological estimates must be avoided.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética/normas , Neuroimagen/métodos , Neuroimagen/normas , Control de Calidad , Adulto , Anciano , Estudios Transversales , Femenino , Guías como Asunto , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
6.
Radiology ; 298(2): 384-392, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33350892

RESUMEN

Background Lesions of cerebral small vessel disease, such as white matter hyperintensities (WMHs) in individuals with cardiometabolic risk factors, interfere with the trajectories of the white matter and eventually contribute to cognitive decline. However, there is no consensus yet about the precise underlying topological mechanism. Purpose To examine whether WMH and cognitive function are associated and whether any such association is mediated or explained by structural connectivity measures in an adult population. In addition, to investigate underlying local abnormalities in white matter by assessing the tract-specific WMH volumes and their tract-specific association with cognitive function. Materials and Methods In the prospective type 2 diabetes-enriched population-based Maastricht Study, structural and diffusion-tensor MRI was performed (December 2013 to February 2017). Total and tract-specific WMH volumes; network measures; cognition scores; and demographic, cardiovascular, and lifestyle characteristics were determined. Multivariable linear regression and mediation analyses were used to investigate the association of WMH volume, tract-specific WMH volumes, and network measures with cognitive function. Associations were adjusted for age, sex, education, diabetes status, and cardiovascular risk factors. Results A total of 5083 participants (mean age, 59 years ± 9 [standard deviation]; 2592 men; 1027 with diabetes) were evaluated. Larger WMH volumes were associated with stronger local (standardized ß coefficient, 0.065; P < .001), but not global, network efficiency and lower information processing speed (standardized ß coefficient, -0.073; P < .001). Moreover, lower local efficiency (standardized ß coefficient, -0.084; P < .001) was associated with lower information processing speed. In particular, the relationship between WMHs and information processing speed was mediated (percentage mediated, 7.2% [95% CI: 3.5, 10.9]; P < .05) by the local network efficiency. Finally, WMH load was larger in the white matter tracts important for information processing speed. Conclusion White matter hyperintensity volume, local network efficiency, and information processing speed scores are interrelated, and local network properties explain lower cognitive performance due to white matter network alterations. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Imagen de Difusión Tensora/métodos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Adulto , Anciano , Cognición , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
7.
Magn Reson Med ; 85(5): 2761-2770, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349996

RESUMEN

PURPOSE: Blood-brain barrier (BBB) disruption is commonly measured with DCE-MRI using continuous dynamic scanning. For precise measurement of subtle BBB leakage, a long acquisition time (>20 minutes) is required. As extravasation of the contrast agent is slow, discrete sampling at strategic time points might be beneficial, and gains scan time for additional sequences. Here, we aimed to explore the feasibility of a sparsely sampled MRI protocol at 7 T. METHODS: The scan protocol consisted of a precontrast quantitative T1 measurement, using an MP2RAGE sequence, and after contrast agent injection, a fast-sampling dynamic gradient-echo perfusion scan and two postcontrast quantitative T1 measurements were applied. Simulations were conducted to determine the optimal postcontrast sampling time points for measuring subtle BBB leakage. The graphical Patlak approach was used to quantify the leakage rate (Ki ) and blood plasma volume (vp ) of normal-appearing white and gray matter. RESULTS: The simulations showed that two postcontrast T1 maps are sufficient to detect subtle leakage, and most sensitive when the last T1 map is acquired late, approximately 30 minutes, after contrast agent administration. The in vivo measurements found Ki and vp values in agreement with other studies, and significantly higher values in gray matter compared with white matter (both p = .04). CONCLUSION: The sparsely sampled protocol was demonstrated to be sensitive to quantify subtle BBB leakage, despite using only three T1 maps. Due to the time-efficiency of this method, it will become more feasible to incorporate BBB leakage measurements in clinical research MRI protocols.


Asunto(s)
Barrera Hematoencefálica , Sustancia Blanca , Barrera Hematoencefálica/diagnóstico por imagen , Medios de Contraste , Sustancia Gris , Imagen por Resonancia Magnética
8.
Mov Disord ; 36(2): 327-339, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33289195

RESUMEN

BACKGROUND: The aim of this systematic review was (1) to identify the brain regions involved in anxiety in Parkinson's disease (PD) based on neuroimaging studies and (2) to interpret the findings against the background of dysfunction of the fear circuit and limbic cortico-striato-thalamocortical circuit. METHODS: Studies assessing anxiety symptoms in PD patients and studies using magnetic resonance imaging, positron emission tomography, or single-photon emission computed tomography were included. RESULTS: The severity of anxiety was associated with changes in the fear circuit and the cortico-striato-thalamocortical limbic circuit. In the fear circuit, a reduced gray-matter volume of the amygdala and the anterior cingulate cortex (ACC); an increased functional connectivity (FC) between the amygdala and orbitofrontal cortex (OFC) and hippocampus and between the striatum and the medial prefrontal cortex (PFC), temporal cortex, and insula; and a reduced FC between the lateral PFC and the OFC, hippocampus, and amygdala were reported. In the cortico-striato-thalamocortical limbic circuit, a reduced FC between the striatum and ACC; a reduced dopaminergic and noradrenergic activity in striatum, thalamus, and locus coeruleus; and a reduced serotoninergic activity in the thalamus were reported. CONCLUSION: To conclude, anxiety is associated with structural and functional changes in both the hypothesized fear and the limbic cortico-striato-thalamocortical circuits. These circuits overlap and may well constitute parts of a more extensive pathway, of which different parts play different roles in anxiety. The neuropathology of PD may affect these circuits in different ways, explaining the high prevalence of anxiety in PD and also the associated cognitive, motor, and psychiatric symptoms. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Amígdala del Cerebelo , Ansiedad/diagnóstico por imagen , Ansiedad/etiología , Trastornos de Ansiedad/diagnóstico por imagen , Trastornos de Ansiedad/etiología , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen
9.
Calcif Tissue Int ; 103(3): 252-265, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29594493

RESUMEN

Most HR-pQCT studies examining cortical bone use an automatically generated endocortical contour (AUTO), which is manually corrected if it visually deviates from the apparent endocortical margin (semi-automatic method, S-AUTO). This technique may be prone to operator-related variability and is time consuming. We examined whether the AUTO instead of the S-AUTO method can be used for cortical bone analysis. Fifty scans of the distal radius and tibia from participants of The Maastricht Study were evaluated with AUTO, and subsequently with S-AUTO by three independent operators. AUTO cortical bone parameters were compared to the average parameters obtained by the three operators (S-AUTOmean). All differences in mean cortical bone parameters between AUTO and S-AUTOmean were < 5%, except for lower AUTO cortical porosity of the radius (- 16%) and tibia (- 6%), and cortical pore volume (Ct.Po.V) of the radius (- 7%). The ICC of S-AUTOmean and AUTO was > 0.90 for all parameters, except for cortical pore diameter of the radius (0.79) and tibia (0.74) and Ct.Po.V of the tibia (0.89), without systematic errors on the Bland-Altman plots. The precision errors (RMS-CV%) of the radius parameters between S-AUTOmean and AUTO were comparable to those between the individual operators, whereas the tibia RMS-CV% between S-AUTOmean and AUTO were higher than those of the individual operators. Comparison of the three operators revealed clear inter-operator variability. This study suggests that the AUTO method can be used for cortical bone analysis in a cross-sectional study, but that the absolute values-particularly of the porosity-related parameters-will be lower.


Asunto(s)
Hueso Cortical/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
BMC Med Imaging ; 17(1): 18, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28241752

RESUMEN

BACKGROUND: Carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK) has superior radiolucency compared to other orthopedic implant materials, e.g. titanium or stainless steel, thus allowing metal-artifact-free postoperative monitoring by computed tomography (CT). Recently, high-resolution peripheral quantitative CT (HRpQCT) proved to be a promising technique to monitor the recovery of volumetric bone mineral density (vBMD), micro-architecture and biomechanical parameters in stable conservatively treated distal radius fractures. When using HRpQCT to monitor unstable distal radius fractures that require volar distal radius plating for fixation, radiolucent CFR-PEEK plates may be a better alternative to currently used titanium plates to allow for reliable assessment. In this pilot study, we assessed the effect of a volar distal radius plate made from CFR-PEEK on bone parameters obtained from HRpQCT in comparison to two titanium plates. METHODS: Plates were instrumented in separate cadaveric human fore-arms (n = 3). After instrumentation and after removal of the plates duplicate HRpQCT scans were made of the region covered by the plate. HRpQCT images were visually checked for artifacts. vBMD, micro-architectural and biomechanical parameters were calculated, and compared between the uninstrumented and instrumented radii. RESULTS: No visible image artifacts were observed in the CFR-PEEK plate instrumented radius, and errors in bone parameters ranged from -3.2 to 2.6%. In the radii instrumented with the titanium plates, severe image artifacts were observed and errors in bone parameters ranged between -30.2 and 67.0%. CONCLUSIONS: We recommend using CFR-PEEK plates in longitudinal in vivo studies that monitor the healing process of unstable distal radius fractures treated operatively by plating or bone graft ingrowth.


Asunto(s)
Placas Óseas/clasificación , Fijación Interna de Fracturas/instrumentación , Fracturas Óseas/cirugía , Radio (Anatomía)/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Benzofenonas , Densidad Ósea , Femenino , Curación de Fractura , Humanos , Cetonas , Masculino , Proyectos Piloto , Polietilenglicoles , Polímeros , Radio (Anatomía)/cirugía , Titanio
11.
Psychon Bull Rev ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720161

RESUMEN

Working memory is known to be capacity-limited and is therefore selective not only for what it encodes but also what it forgets. Explicit forgetting cues can be used effectively to free up capacity, but it is not clear how working memory adaptively forgets in the absence of explicit cues. An important implicit cue that may tune forgetting in working memory is the passage of time. When information becomes irrelevant more quickly, working memory should also forget information more quickly. In three delayed-estimation experiments, we systematically manipulated how probing probability changed as time passed on after encoding an item (i.e., the "probing hazard"). In some blocks, probing hazard decreased after encoding an item, requiring participants to only briefly retain the memory item. In other blocks, the probing hazard increased or stayed flat, as the retention interval was lengthened. In line with our hypothesis, we found that participants adapted their forgetting rate to the probing dynamics of the working memory task. When the memory item quickly became irrelevant ("decreasing" probing hazard), forgetting rate was higher than in blocks where probing hazard increased or stayed flat. The time course of these adaptations in forgetting implies a fast and flexible mechanism. Interestingly, participants could not explicitly report the order of conditions, suggesting forgetting is implicitly sped up. These findings suggest that implicit adaptations to the temporal structure of our environment tune forgetting speed in working memory, possibly contributing to the flexible allocation of limited working memory resources.

12.
Ecol Evol ; 14(8): e70098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100204

RESUMEN

The 'landscape of fear' concept offers valuable insights into wildlife behaviour, yet its practical integration into habitat management for conservation remains underexplored. In this study, conducted in the subtropical monsoon grasslands of Bardia National Park, Nepal, we aimed to bridge this gap through a multi-year, landscape-scale experimental investigation in Bardia National Park, Nepal. The park has the highest density of tigers (with an estimated density of ~7 individuals per 100 km2) in Nepal, allowing us to understand the effect of habitat management on predation risk and resource availability especially for three cervid species: chital (Axis axis), swamp deer (Rucervus duvaucelii) and hog deer (Axis porcinus). We used plots with varying mowing frequency (0-4 times per year), size (ranging from small: 49 m2 to large: 3600 m2) and artificial fertilisation type (none, phosphorus, nitrogen) to assess the trade-offs between probable predation risk and resources for these cervid species, which constitute primary prey for tigers in Nepal. Our results showed distinct responses of these deer to perceived predation risk within grassland habitats. Notably, these deer exhibited heightened use of larger plots, indicative of a perceived sense of safety, as evidenced by the higher occurrence of pellet groups in the larger plots (mean = 0.1 pellet groups m-2 in 3600 m2 plots vs. 0.07 in 400 m2 and 0.05 in 49 m2 plots). Furthermore, the level of use by the deer was significantly higher in larger plots that received mowing and fertilisation treatments compared to smaller plots subjected to similar treatments. Of particular interest is the observation that chital and swamp deer exhibited greater utilisation of the centre (core) areas within the larger plots (mean = 0.21 pellet groups m-2 at the centre vs. 0.13 at the edge) despite the edge (periphery) also provided attractive resources to these deer. In contrast, hog deer did not display any discernible reaction to the experimental treatments, suggesting potential species-specific variations in response to perceived predation risk arising from management interventions. Our findings emphasise the importance of a sense of security as a primary determinant of habitat selection for medium-sized deer within managed grassland environments. These insights carry practical implications for park managers, providing a nuanced understanding of integrating the 'landscape of fear' into habitat management strategies. This study emphasises that the 'landscape of fear' concept can and should be integrated into habitat management to maintain delicate predator-prey dynamics within ecosystems.

13.
Hypertension ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136128

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) integrity is presumed to be impaired in hypertension, resulting from cerebral endothelial dysfunction. Hypertension precedes various cerebrovascular diseases, such as cerebral small vessel disease, and is a risk factor for developing neurodegenerative diseases for which BBB disruption is a preceding pathophysiological process. In this cross-sectional study, we investigated the relation between hypertension, current blood pressure, and BBB leakage in human subjects. METHODS: BBB leakage was determined in 22 patients with hypertension and 19 age- and sex-matched normotensive controls (median age [range], 65 [45-80] years; 19 men) using a sparsely time-sampled contrast-enhanced 7T magnetic resonance imaging protocol. Structural cerebral small vessel disease markers were visually rated. Multivariable regression analyses, adjusted for age, sex, cardiovascular risk factors, and cerebral small vessel disease markers, were performed to determine the relation between hypertension status, systolic and diastolic blood pressure, mean arterial pressure, drug treatment, and BBB leakage. RESULTS: Both hypertensive and normotensive participants showed mild scores of cerebral small vessel disease. BBB leakage did not differ between hypertensive and normotensive participants; however, it was significantly higher for systolic blood pressure, diastolic blood pressure, and mean arterial pressure in the cortex, and diastolic blood pressure and mean arterial pressure in the gray matter. Effectively treated patients showed less BBB leakage than those with current hypertension. CONCLUSIONS: BBB integrity in the total and cortical gray matter decreases with increasing blood pressure but is not related to hypertension status. These findings show that BBB disruption already occurs with increasing blood pressure, before the presence of overt cerebral tissue damage. Additionally, our results suggest that effective antihypertensive medication has a protective effect on the BBB. REGISTRATION: URL: https://trialsearch.who.int/; Unique identifier: NL7537.

14.
Brain Sci ; 14(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38248277

RESUMEN

In population-based cohort studies, magnetic resonance imaging (MRI) is vital for examining brain structure and function. Advanced MRI techniques, such as diffusion-weighted MRI (dMRI) and resting-state functional MRI (rs-fMRI), provide insights into brain connectivity. However, biases in MRI data acquisition and processing can impact brain connectivity measures and their associations with demographic and clinical variables. This study, conducted with 5110 participants from The Maastricht Study, explored the relationship between brain connectivity and various image quality metrics (e.g., signal-to-noise ratio, head motion, and atlas-template mismatches) that were obtained from dMRI and rs-fMRI scans. Results revealed that in particular increased head motion (R2 up to 0.169, p < 0.001) and reduced signal-to-noise ratio (R2 up to 0.013, p < 0.001) negatively impacted structural and functional brain connectivity, respectively. These image quality metrics significantly affected associations of overall brain connectivity with age (up to -59%), sex (up to -25%), and body mass index (BMI) (up to +14%). Associations with diabetes status, educational level, history of cardiovascular disease, and white matter hyperintensities were generally less affected. This emphasizes the potential confounding effects of image quality in large population-based neuroimaging studies on brain connectivity and underscores the importance of accounting for it.

15.
J Am Heart Assoc ; 13(3): e9112, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38240213

RESUMEN

BACKGROUND: Microvascular dysfunction is involved in the development of various cerebral disorders. It may contribute to these disorders by disrupting white matter tracts and altering brain connectivity, but evidence is scarce. We investigated the association between multiple biomarkers of microvascular function and whole-brain white matter connectivity. METHODS AND RESULTS: Cross-sectional data from The Maastricht Study, a Dutch population-based cohort (n=4326; age, 59.4±8.6 years; 49.7% women). Measures of microvascular function included urinary albumin excretion, central retinal arteriolar and venular calibers, composite scores of flicker light-induced retinal arteriolar and venular dilation, and plasma biomarkers of endothelial dysfunction (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and von Willebrand factor). White matter connectivity was calculated from 3T diffusion magnetic resonance imaging to quantify the number (average node degree) and organization (characteristic path length, global efficiency, clustering coefficient, and local efficiency) of white matter connections. A higher plasma biomarkers of endothelial dysfunction composite score was associated with a longer characteristic path length (ß per SD, 0.066 [95% CI, 0.017-0.114]) after adjustment for sociodemographic, lifestyle, and cardiovascular factors but not with any of the other white matter connectivity measures. After multiple comparison correction, this association was nonsignificant. None of the other microvascular function measures were associated with any of the connectivity measures. CONCLUSIONS: These findings suggest that microvascular dysfunction as measured by indirect markers is not associated with whole-brain white matter connectivity.


Asunto(s)
Sustancia Blanca , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Sustancia Blanca/patología , Estudios Transversales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética , Biomarcadores
16.
Curr Opin Rheumatol ; 25(4): 524-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23680778

RESUMEN

PURPOSE OF REVIEW: Published data raise concerns about the use of nonselective NSAIDs and selective cyclo-oxygenase (COX)-2 inhibitors as anti-inflammatory or analgesic drugs in patients after a recent fracture or who are undergoing (uncemented) arthroplasty or osteotomy. However, clinical reports on the effect of COX-2 inhibition on fracture healing in humans have been variable and inconclusive. This review gives an overview of the published data and an advice when to avoid NSAIDs. RECENT FINDINGS: Prostaglandins play an important role as mediators of inflammation and COX are required for their production. Inflammation is an essential step in the fracture healing process in which prostaglandin production by COX-2 is involved. Data from animal studies suggest that NSAIDs, which inhibit COX-2, can impair fracture healing due to the inhibition of the endochondral ossification pathway. Animal data suggest that the effects of COX-2 inhibitors are dependent on the timing, duration, and dose, and that these effects are reversible. SUMMARY: These animal data, together with the view of limited scientifically robust clinical evidence in humans, indicate that physicians consider only short-term administration of COX-2 inhibitors or other drugs in the pain management of patients who are in the phase of fracture or other bone defect healing. COX-2-inhibitors should be considered a potential risk factor for fracture healing, and therefore to be avoided in patients at risk for delayed fracture healing.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Curación de Fractura/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Inhibidores de la Ciclooxigenasa 2/farmacología , Modelos Animales de Enfermedad , Fracturas Óseas/inducido químicamente , Humanos , Factores de Riesgo
17.
J Parkinsons Dis ; 13(1): 93-103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36591659

RESUMEN

BACKGROUND: Cognitive behavioral therapy (CBT) reduces anxiety symptoms in patients with Parkinson's disease (PD). OBJECTIVE: The objective of this study was to identify changes in functional connectivity in the brain after CBT for anxiety in patients with PD. METHODS: Thirty-five patients with PD and clinically significant anxiety were randomized over two groups: CBT plus clinical monitoring (10 CBT sessions) or clinical monitoring only (CMO). Changes in severity of anxiety symptoms were assessed with the Parkinson Anxiety Scale (PAS). Resting-state functional brain MRI was performed at baseline and after the intervention. Functional networks were extracted by an Independent Component Analysis (ICA). Functional connectivity (FC) changes between structures involved in the PD-related anxiety circuits, such as the fear circuit (involving limbic, frontal, and cingulate structures) and the cortico-striato-thalamo-cortical limbic circuit, and both within and between functional networks were compared between groups and regressed with anxiety symptoms changes. RESULTS: Compared to CMO, CBT reduced the FC between the right thalamus and the bilateral orbitofrontal cortices and increased the striato-frontal FC. CBT also increased the fronto-parietal FC within the central executive network (CEN) and between the CEN and the salience network. After CBT, improvement of PAS-score was associated with an increased striato-cingulate and parieto-temporal FC, and a decreased FC within the default-mode network and between the dorsal attentional network and the language network. CONCLUSION: CBT in PD-patients improves anxiety symptoms and is associated with functional changes reversing the imbalance between PD-related anxiety circuits and reinforcing cognitive control on emotional processing.


Asunto(s)
Terapia Cognitivo-Conductual , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Ansiedad/etiología , Ansiedad/terapia , Imagen por Resonancia Magnética
18.
Magn Reson Imaging ; 102: 55-61, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37137345

RESUMEN

PURPOSE: Cerebral small vessel disease (cSVD) involves several pathologies affecting the small vessels, including blood-brain barrier (BBB) impairment. Dynamic susceptibility contrast (DSC) MRI is sensitive to both blood perfusion and BBB leakage, and correction methods may be crucial for obtaining reliable perfusion measures. These methods might also be applicable to detect BBB leakage itself. This study investigated to what extent DSC-MRI can measure subtle BBB leakage in a clinical feasibility setting. METHODS: In vivo DCE and DSC data were collected from fifteen cSVD patients (71 (±10) years, 6F/9M) and twelve elderly controls (71 (±10) years, 4F/8M). DSC-derived leakage fractions were obtained using the Boxerman-Schmainda-Weisskoff method (K2). K2 was compared with the DCE-derived leakage rate Ki, obtained from Patlak analysis. Subsequently, differences were assessed between white matter hyperintensities (WMH), cortical gray matter (CGM), and normal-appearing white matter (NAWM). Additionally, computer simulations were performed to assess the sensitivity of DSC-MRI to BBB leakage. RESULTS: K2 showed significant differences between tissue regions (P < 0.001 for CGM-NAWM and CGM-WMH, and P = 0.001 for NAWM-WMH). Conversely, according to the computer simulations the DSC sensitivity was insufficient to measure subtle BBB leakage, as the K2 values were below the derived limit of quantification (4∙10-3 min-1). As expected, Ki was elevated in the WMH compared to CGM and NAWM (P < 0.001). CONCLUSIONS: Although clinical DSC-MRI seems capable to detect subtle BBB leakage differences between WMH and normal-appearing brain tissue it is not recommended. K2 as a direct measure for subtle BBB leakage remains ambiguous as its signal effects are due to mixed T1- and T2∗-weighting. Further research is warranted to better disentangle perfusion from leakage effects.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Sustancia Blanca , Humanos , Anciano , Barrera Hematoencefálica/diagnóstico por imagen , Estudios de Factibilidad , Medios de Contraste/farmacología , Imagen por Resonancia Magnética/métodos , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen
19.
Alzheimers Dement (Amst) ; 15(3): e12459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675435

RESUMEN

Introduction: There is an urgent need for biomarkers identifying individuals at risk of early-stage cognitive impairment. Using cross-sectional data from The Maastricht Study, this study included 197 individuals with mild cognitive impairment (MCI) and 200 cognitively unimpaired individuals aged 40 to 75, matched by age, sex, and educational level. Methods: We assessed the association of plasma sphingolipid and ceramide transfer protein (CERT) levels with MCI and adjusted for potentially confounding risk factors. Furthermore, the relationship of plasma sphingolipids and CERTs with magnetic resonance imaging brain volumes was assessed and age- and sex-stratified analyses were performed. Results: Associations of plasma ceramide species C18:0 and C24:1 and combined plasma ceramide chain lengths (ceramide risk score) with MCI were moderated by sex, but not by age, and higher levels were associated with MCI in men. No associations were found among women. In addition, higher levels of ceramide C20:0, C22:0, and C24:1, but not the ceramide risk score, were associated with larger volume of the hippocampus after controlling for covariates, independent of MCI. Although higher plasma ceramide C18:0 was related to higher plasma CERT levels, no association of CERT levels was found with MCI or brain volumes. Discussion: Our results warrant further analysis of plasma ceramides as potential markers for MCI in middle-aged men. In contrast to previous studies, no associations of plasma sphingolipids with MCI or brain volumes were found in women, independent of age. These results highlight the importance of accounting for sex- and age-related factors when examining sphingolipid and CERT metabolism related to cognitive function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA