Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 193(4): 2459-2479, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37595026

RESUMEN

Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.


Asunto(s)
Transcriptoma , Zea mays , Zea mays/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica , Fotosíntesis/genética , Fenotipo , Regulación de la Expresión Génica de las Plantas
3.
New Phytol ; 238(2): 737-749, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683443

RESUMEN

Crop genetic diversity for climate adaptations is globally partitioned. We performed experimental evolution in maize to understand the response to selection and how plant germplasm can be moved across geographical zones. Initialized with a common population of tropical origin, artificial selection on flowering time was performed for two generations at eight field sites spanning 25° latitude, a 2800 km transect. We then jointly tested all selection lineages across the original sites of selection, for the target trait and 23 other traits. Modeling intergenerational shifts in a physiological reaction norm revealed separate components for flowering-time plasticity. Generalized and local modes of selection altered the plasticity of each lineage, leading to a latitudinal pattern in the responses to selection that were strongly driven by photoperiod. This transformation led to widespread changes in developmental, architectural, and yield traits, expressed collectively in an environment-dependent manner. Furthermore, selection for flowering time alone alleviated a maladaptive syndrome and improved yields for tropical maize in the temperate zone. Our findings show how phenotypic selection can rapidly shift the flowering phenology and plasticity of maize. They also demonstrate that selecting crops to local conditions can accelerate adaptation to climate change.


Asunto(s)
Flores , Zea mays , Flores/genética , Zea mays/genética , Fenotipo , Fotoperiodo
4.
Theor Appl Genet ; 136(7): 155, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37329482

RESUMEN

KEY MESSAGE: A novel locus was discovered on chromosome 7 associated with a lesion mimic in maize; this lesion mimic had a quantitative and heritable phenotype and was predicted better via subset genomic markers than whole genome markers across diverse environments. Lesion mimics are a phenotype of leaf micro-spotting in maize (Zea mays L.), which can be early signs of biotic or abiotic stresses. Dissecting its inheritance is helpful to understand how these loci behave across different genetic backgrounds. Here, 538 maize recombinant inbred lines (RILs) segregating for a novel lesion mimic were quantitatively phenotyped in Georgia, Texas, and Wisconsin. These RILs were derived from three bi-parental crosses using a tropical pollinator (Tx773) as the common parent crossed with three inbreds (LH195, LH82, and PB80). While this lesion mimic was heritable across three environments based on phenotypic ([Formula: see text] = 0.68) and genomic ([Formula: see text] = 0.91) data, transgressive segregation was observed. A genome-wide association study identified a single novel locus on chromosome 7 (at 70.6 Mb) also covered by a quantitative trait locus interval (69.3-71.0 Mb), explaining 11-15% of the variation, depending on the environment. One candidate gene identified in this region, Zm00001eb308070, is related to the abscisic acid pathway involving in cell death. Genomic predictions were applied to genome-wide markers (39,611 markers) contrasted with a marker subset (51 markers). Population structure explained more variation than environment in genomic prediction, but other substantial genetic background effects were additionally detected. Subset markers explained substantially less genetic variation (24.9%) for the lesion mimic than whole genome markers (55.4%) in the model, yet predicted the lesion mimic better (0.56-0.66 vs. 0.26-0.29). These results indicate this lesion mimic phenotype was less affected by environment than by epistasis and genetic background effects, which explain its transgressive segregation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Epistasis Genética , Mapeo Cromosómico , Fenotipo , Antecedentes Genéticos , Polimorfismo de Nucleótido Simple
5.
J Dairy Sci ; 106(12): 8710-8722, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641327

RESUMEN

Zeins are commercially important proteins found in corn endosperms. The objective of this study was to evaluate the effect of altering zein levels in corn inbred lines carrying endosperm mutations with differential allelic dosage and analyze the effects on the composition, nutritive value, and starch digestibility of whole-plant corn silage (WPCS) at 5 storage lengths. Three inbred lines carrying 3 different endosperm modifiers (opaque-2 [o2], floury-2 [fl2], and soft endosperm-1 [h1]) were pollinated with 2 pollen sources to form pairs of near-isogenic lines with either 2 or 3 doses of the mutant allele for each endosperm modifier. The experiment was designed as a split-plot design with 3 replications. Pollinated genotype was the main plot factor, and storage length was the subplot-level factor. Agronomic precautions were taken to mimic hybrid WPCS to the extent possible. Samples were collected at approximately 30% dry matter (DM) using a forage harvester and ensiled in heat-sealed plastic bags for 0, 30, 60, 120, and 240 d. Thus, the experiment consisted of 30 treatments (6 genotypes × 5 storage lengths) and 90 ensiling units (3 replications per treatment). Measurements included nutrient analysis, including crude protein, soluble crude protein, amylase-treated neutral detergent fiber, acid detergent fiber, lignin, starch, fermentation end products, zein concentration, and in vitro starch digestibility (ivSD). The nutritional profile of the inbred-based silage samples was similar to hybrid values reported in literature. Significant differences were found in fresh (unfermented) sample kernels for endosperm vitreousness and zein profiles between and within isogenic pairs. The o2 homozygous (3 doses of mutant allele) had the highest reduction in vitreousness level (74.5 to 38%) and zein concentration (6.2 to 4.7% of DM) compared with the heterozygous counterpart (2 doses of mutant allele). All genotypes showed significant reduction of total zeins and α-zeins during progressive storage length. In vitro starch digestibility increased with storage length and had significant effects of genotype and storage length but not for genotype by storage length interaction, which suggests that the storage period did not attenuate the difference in ivSD between near-isogenic pairs caused by zeins in WPCS. Both total zeins and α-zeins showed a strong negative correlation with ivSD, which agrees with the general hypothesis that the degradation of zeins increases ruminal starch degradability. Homozygous o2 was the only mutant with significantly higher ivSD compared with the heterozygous version, which suggests that, if all other conditions remain constant in a WPCS systems, substantial reductions in endosperm α-zeins are required to significantly improve ivSD in the silo.


Asunto(s)
Ensilaje , Zeína , Animales , Ensilaje/análisis , Almidón/metabolismo , Endospermo/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Fermentación , Nitrógeno/metabolismo , Detergentes/metabolismo , Rumen/metabolismo , Digestión
6.
Plant J ; 105(1): 93-107, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098691

RESUMEN

Single-parent expression (SPE) is defined as gene expression in only one of the two parents. SPE can arise from differential expression between parental alleles, termed non-presence/absence (non-PAV) SPE, or from the physical absence of a gene in one parent, termed PAV SPE. We used transcriptome data of diverse Zea mays (maize) inbreds and hybrids, including 401 samples from five different tissues, to test for differences between these types of SPE genes. Although commonly observed, SPE is highly genotype and tissue specific. A positive correlation was observed between the genetic distance of the two inbred parents and the number of SPE genes identified. Regulatory analysis showed that PAV SPE and non-PAV SPE genes are mainly regulated by cis effects, with a small fraction under trans regulation. Polymorphic transposable element insertions in promoter sequences contributed to the high level of cis regulation for PAV SPE and non-PAV SPE genes. PAV SPE genes were more frequently expressed in hybrids than non-PAV SPE genes. The expression of parentally silent alleles in hybrids of non-PAV SPE genes was relatively rare but occurred in most hybrids. Non-PAV SPE genes with expression of the silent allele in hybrids are more likely to exhibit above high parent expression level than hybrids that do not express the silent allele, leading to non-additive expression. This study provides a comprehensive understanding of the nature of non-PAV SPE and PAV SPE genes and their roles in gene expression complementation in maize hybrids.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Zea mays/genética , Alelos , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Hibridación Genética , Filogenia , Regiones Promotoras Genéticas/genética , Zea mays/metabolismo
7.
Plant Cell ; 31(9): 1968-1989, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239390

RESUMEN

Premature senescence in annual crops reduces yield, while delayed senescence, termed stay-green, imposes positive and negative impacts on yield and nutrition quality. Despite its importance, scant information is available on the genetic architecture of senescence in maize (Zea mays) and other cereals. We combined a systematic characterization of natural diversity for senescence in maize and coexpression networks derived from transcriptome analysis of normally senescing and stay-green lines. Sixty-four candidate genes were identified by genome-wide association study (GWAS), and 14 of these genes are supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport and signaling, and sink activity. Eight of the GWAS candidates, independently supported by a coexpression network underlying stay-green, include a trehalose-6-phosphate synthase, a NAC transcription factor, and two xylan biosynthetic enzymes. Source-sink communication and the activity of cell walls as a secondary sink emerge as key determinants of stay-green. Mutant analysis supports the role of a candidate encoding Cys protease in stay-green in Arabidopsis (Arabidopsis thaliana), and analysis of natural alleles suggests a similar role in maize. This study provides a foundation for enhanced understanding and manipulation of senescence for increasing carbon yield, nutritional quality, and stress tolerance of maize and other cereals.


Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glucosiltransferasas/genética , Hojas de la Planta , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Transcriptoma
8.
Plant Physiol ; 182(1): 318-331, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575624

RESUMEN

Small RNAs (sRNAs) regulate gene expression, play important roles in epigenetic pathways, and are hypothesized to contribute to hybrid vigor in plants. Prior investigations have provided valuable insights into associations between sRNAs and heterosis, often using a single hybrid genotype or tissue, but our understanding of the role of sRNAs and their potential value to plant breeding are limited by an incomplete picture of sRNA variation between diverse genotypes and development stages. Here, we provide a deep exploration of sRNA variation and inheritance among a panel of 108 maize (Zea mays) samples spanning five tissues from eight inbred parents and 12 hybrid genotypes, covering a spectrum of heterotic groups, genetic variation, and levels of heterosis for various traits. We document substantial developmental and genotypic influences on sRNA expression, with varying patterns for 21-nucleotide (nt), 22-nt, and 24-nt sRNAs. We provide a detailed view of the distribution of sRNAs in the maize genome, revealing a complex makeup that also shows developmental plasticity, particularly for 22-nt sRNAs. sRNAs exhibited substantially more variation between inbreds as compared with observed variation for gene expression. In hybrids, we identify locus-specific examples of nonadditive inheritance, mostly characterized as partial or complete dominance, but rarely outside the parental range. However, the global abundance of 21-nt, 22-nt, and 24-nt sRNAs varies very little between inbreds and hybrids, suggesting that hybridization affects sRNA expression principally at specific loci rather than on a global scale. This study provides a valuable resource for understanding the potential role of sRNAs in hybrid vigor.


Asunto(s)
ARN de Planta/genética , Zea mays/genética , Regulación de la Expresión Génica de las Plantas/genética , Genotipo , Vigor Híbrido/genética , Hibridación Genética
9.
Theor Appl Genet ; 133(10): 2761-2773, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32572549

RESUMEN

KEY MESSAGE: Significant introgression-by-environment interactions are observed for traits throughout development from small introgressed segments of the genome. Relatively small genomic introgressions containing quantitative trait loci can have significant impacts on the phenotype of an individual plant. However, the magnitude of phenotypic effects for the same introgression can vary quite substantially in different environments due to introgression-by-environment interactions. To study potential patterns of introgression-by-environment interactions, fifteen near-isogenic lines (NILs) with > 90% B73 genetic background and multiple Mo17 introgressions were grown in 16 different environments. These environments included five geographical locations with multiple planting dates and multiple planting densities. The phenotypic impact of the introgressions was evaluated for up to 26 traits that span different growth stages in each environment to assess introgression-by-environment interactions. Results from this study showed that small portions of the genome can drive significant genotype-by-environment interaction across a wide range of vegetative and reproductive traits, and the magnitude of the introgression-by-environment interaction varies across traits. Some introgressed segments were more prone to introgression-by-environment interaction than others when evaluating the interaction on a whole plant basis throughout developmental time, indicating variation in phenotypic plasticity throughout the genome. Understanding the profile of introgression-by-environment interaction in NILs is useful in consideration of how small introgressions of QTL or transgene containing regions might be expected to impact traits in diverse environments.


Asunto(s)
Interacción Gen-Ambiente , Genoma de Planta , Sitios de Carácter Cuantitativo , Zea mays/genética , Ambiente , Genotipo , Fenotipo
10.
BMC Plant Biol ; 19(1): 45, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704393

RESUMEN

BACKGROUND: Maize stover is an important source of crop residues and a promising sustainable energy source in the United States. Stalk is the main component of stover, representing about half of stover dry weight. Characterization of genetic determinants of stalk traits provide a foundation to optimize maize stover as a biofuel feedstock. We investigated maize natural genetic variation in genome-wide association studies (GWAS) to detect candidate genes associated with traits related to stalk biomass (stalk diameter and plant height) and stalk anatomy (rind thickness, vascular bundle density and area). RESULTS: Using a panel of 942 diverse inbred lines, 899,784 RNA-Seq derived single nucleotide polymorphism (SNP) markers were identified. Stalk traits were measured on 800 members of the panel in replicated field trials across years. GWAS revealed 16 candidate genes associated with four stalk traits. Most of the detected candidate genes were involved in fundamental cellular functions, such as regulation of gene expression and cell cycle progression. Two of the regulatory genes (Zmm22 and an ortholog of Fpa) that were associated with plant height were previously shown to be involved in regulating the vegetative to floral transition. The association of Zmm22 with plant height was confirmed using a transgenic approach. Transgenic lines with increased expression of Zmm22 showed a significant decrease in plant height as well as tassel branch number, indicating a pleiotropic effect of Zmm22. CONCLUSION: Substantial heritable variation was observed in the association panel for stalk traits, indicating a large potential for improving useful stalk traits in breeding programs. Genome-wide association analyses detected several candidate genes associated with multiple traits, suggesting common regulatory elements underlie various stalk traits. Results of this study provide insights into the genetic control of maize stalk anatomy and biomass.


Asunto(s)
Tallos de la Planta/anatomía & histología , Carácter Cuantitativo Heredable , Zea mays/genética , Biomasa , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple/genética , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo
11.
Plant Cell ; 28(11): 2700-2714, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27803309

RESUMEN

Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.


Asunto(s)
Genoma de Planta/genética , Transcriptoma/genética , Zea mays/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Variación Genética/genética
12.
Plant J ; 89(1): 169-178, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27585732

RESUMEN

Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository.


Asunto(s)
Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Estructuras de las Plantas/anatomía & histología , Zea mays/anatomía & histología , Algoritmos , Productos Agrícolas/anatomía & histología , Estructuras de las Plantas/crecimiento & desarrollo , Análisis de Componente Principal , Reproducibilidad de los Resultados , Zea mays/crecimiento & desarrollo
13.
Plant Cell ; 26(1): 121-35, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24488960

RESUMEN

Genomes at the species level are dynamic, with genes present in every individual (core) and genes in a subset of individuals (dispensable) that collectively constitute the pan-genome. Using transcriptome sequencing of seedling RNA from 503 maize (Zea mays) inbred lines to characterize the maize pan-genome, we identified 8681 representative transcript assemblies (RTAs) with 16.4% expressed in all lines and 82.7% expressed in subsets of the lines. Interestingly, with linkage disequilibrium mapping, 76.7% of the RTAs with at least one single nucleotide polymorphism (SNP) could be mapped to a single genetic position, distributed primarily throughout the nonpericentromeric portion of the genome. Stepwise iterative clustering of RTAs suggests, within the context of the genotypes used in this study, that the maize genome is restricted and further sampling of seedling RNA within this germplasm base will result in minimal discovery. Genome-wide association studies based on SNPs and transcript abundance in the pan-genome revealed loci associated with the timing of the juvenile-to-adult vegetative and vegetative-to-reproductive developmental transitions, two traits important for fitness and adaptation. This study revealed the dynamic nature of the maize pan-genome and demonstrated that a substantial portion of variation may lie outside the single reference genome for a species.


Asunto(s)
Genoma de Planta , Transcriptoma , Zea mays/genética , Cromosomas de las Plantas , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ARN
14.
Theor Appl Genet ; 130(11): 2283-2295, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28780586

RESUMEN

KEY MESSAGE: Capitalizing upon the genomic characteristics of long-term random mating populations, sampling from pre-selected landraces is a promising approach for broadening the genetic base of elite germplasm for quantitative traits. Genome-enabled strategies for harnessing untapped allelic variation of landraces are currently evolving. The success of such approaches depends on the choice of source material. Thus, the analysis of different strategies for sampling allelic variation from landraces and their impact on population diversity and linkage disequilibrium (LD) is required to ensure the efficient utilization of diversity. We investigated the impact of different sampling strategies on diversity parameters and LD based on high-density genotypic data of 35 European maize landraces each represented by more than 20 individuals. On average, five landraces already captured ~95% of the molecular diversity of the entire dataset. Within landraces, absence of pronounced population structure, consistency of linkage phases and moderate to low LD levels were found. When combining data of up to 10 landraces, LD decay distances decreased to a few kilobases. Genotyping 24 individuals per landrace with 5k SNPs was sufficient for obtaining representative estimates of diversity and LD levels to allow an informed pre-selection of landraces. Integrating results from European with Central and South American landraces revealed that European landraces represent a unique and diverse spectrum of allelic variation. Sampling strategies for harnessing allelic variation from landraces depend on the study objectives. If the focus lies on the improvement of elite germplasm for quantitative traits, we recommend sampling from pre-selected landraces, as it yields a wide range of diversity, allows optimal marker imputation, control for population structure and avoids the confounding effects of strong adaptive alleles.


Asunto(s)
Variación Genética , Genética de Población , Desequilibrio de Ligamiento , Fitomejoramiento , Zea mays/genética , Alelos , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
15.
J Exp Bot ; 67(6): 1907-17, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26826570

RESUMEN

Seed size is an important component of grain yield and a key determinant trait for crop domestication. The Krug Yellow Dent long-term selection experiment for large and small seed provides a valuable resource to dissect genetic and phenotypic changes affecting seed size within a common genetic background. In this study, inbred lines derived from Krug Large Seed (KLS) and Krug Small Seed (KSS) populations and reciprocal F1 crosses were used to investigate developmental and molecular mechanisms governing seed size. Seed morphological characteristics showed striking differences between KLS and KSS inbred lines, and the reciprocal cross experiment revealed a strong maternal influence on both seed weight and seed size. Quantification of endosperm area, starchy endosperm cell size, and kernel dry mass accumulation indicated a positive correlation between seed size, endosperm cell number, and grain filling rate, and patterns of grain filling in reciprocal crosses mirrored that of the maternal parent. Consistent with the maternal contribution to seed weight, transcriptome profiling of reciprocal F1 hybrids showed substantial similarities to the maternal parent. A set of differentially expressed genes between KLS and KSS inbreds were found, which fell into a broad number of functional categories including DNA methylation, nucleosome assembly, and heat stress response. In addition, gene co-expression network analysis of parental inbreds and reciprocal F1 hybrids identified co-expression modules enriched in ovule development and DNA methylation, implicating these two processes in seed size determination. These results expand our understanding of seed size regulation and help to uncover the developmental and molecular basis underlying maternal control of seed size in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Semillas/anatomía & histología , Semillas/genética , Transcripción Genética , Zea mays/anatomía & histología , Zea mays/genética , Cruzamientos Genéticos , Endospermo/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genes de Plantas , Hibridación Genética , Endogamia , Tamaño de los Órganos/genética , Fenotipo
17.
Plant Physiol ; 165(2): 658-669, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24710068

RESUMEN

Seed size is a component of grain yield and an important trait in crop domestication. To understand the mechanisms governing seed size in maize (Zea mays), we examined transcriptional and developmental changes during seed development in populations divergently selected for large and small seed size from Krug, a yellow dent maize cultivar. After 30 cycles of selection, seeds of the large seed population (KLS30) have a 4.7-fold greater weight and a 2.6-fold larger size compared with the small seed population (KSS30). Patterns of seed weight accumulation from the time of pollination through 30 d of grain filling showed an earlier onset, slower rate, and earlier termination of grain filling in KSS30 relative to KLS30. This was further supported by transcriptome patterns in seeds from the populations and derived inbreds. Although the onset of key genes was earlier in small seeds, similar maximum transcription levels were observed in large seeds at later stages, suggesting that functionally weaker alleles, rather than transcript abundance, may be the basis of the slow rate of seed filling in KSS30. Gene coexpression networks identified several known genes controlling cellularization and proliferation as well as novel genes that will be useful candidates for biotechnological approaches aimed at altering seed size in maize and other cereals.

18.
J Exp Bot ; 66(14): 4305-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25871649

RESUMEN

A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment.


Asunto(s)
Pared Celular/química , Zea mays/metabolismo , Hidrólisis
19.
Theor Appl Genet ; 128(3): 529-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575839

RESUMEN

KEY MESSAGE: Natural variation for the timing of vegetative phase change in maize is controlled by several large effect loci, one corresponding to Glossy15 , a gene known for regulating juvenile tissue traits. Vegetative phase change is an intrinsic component of developmental programs in plants. Juvenile and adult vegetative tissues in grasses differ dramatically in their anatomical and biochemical composition affecting the utility of specific genotypes as animal feed and biofuel feedstock. The molecular network controlling the process of developmental transition is incompletely characterized. In this study, we used scoring for juvenile and adult epicuticular wax as an entry point to discover quantitative trait loci (QTL) controlling phenotypic variation for the developmental timing of juvenile to adult transition in maize. We scored the last leaf with juvenile wax on 25 recombinant inbred line families of the B73 reference Nested Association Mapping (NAM) population and the intermated B73×Mo17 (IBM) population across multiple seasons. A total of 13 unique QTL were identified through genome-wide association analysis across the NAM populations, three of which have large effects. A QTL located on chromosome nine had the most significant SNPs within Glossy15, a gene controlling expression of juvenile leaf traits. The second large effect QTL is located on chromosome two. The most significant SNP in this QTL is located adjacent to a homolog of the Arabidopsis transcription factor, enhanced downy mildew-2, which has been shown to promote the transition from juvenile to adult vegetative phase. Overall, these results show that several major QTL and potential candidate genes underlie the extensive natural variation for this developmental trait.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Zea mays/genética , Genes de Plantas , Estudios de Asociación Genética , Variación Genética , Fenotipo , Polimorfismo de Nucleótido Simple , Zea mays/crecimiento & desarrollo
20.
Genet Sel Evol ; 47: 30, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25928167

RESUMEN

BACKGROUND: High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the data and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome. RESULTS: Simulations applying this method were performed to identify selection signatures from pooled sequencing FST data, for which allele frequencies were estimated from a pool of individuals. The relative ratio of true to false positives was twice that generated by existing techniques. A comparison of the approach to a previous study that involved pooled sequencing FST data from maize suggested that outlying windows were more clearly separated from their neighbors than when using a standard sliding window approach. CONCLUSIONS: We have developed a novel technique to identify window boundaries for subsequent analysis protocols. When applied to selection studies based on F ST data, this method provides a high discovery rate and minimizes false positives. The method is implemented in the R package GenWin, which is publicly available from CRAN.


Asunto(s)
Genómica/métodos , Interpretación Estadística de Datos , Frecuencia de los Genes , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA