Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Med Chem ; 17(3): 289-297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32914717

RESUMEN

BACKGROUND: Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies. OBJECTIVE: The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma. METHODS: The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed. RESULTS: We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma. CONCLUSION: The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.


Asunto(s)
Asma/metabolismo , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Oxazoles/química , Oxazoles/farmacología , Asma/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Oxazoles/metabolismo , Oxazoles/uso terapéutico , Conformación Proteica , Receptores de Neuroquinina-1/química , Receptores de Neuroquinina-1/metabolismo
2.
Int J Biol Macromol ; 108: 391-400, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29225175

RESUMEN

The pomegranate (Punica granatum) sarcotesta contains a chitin-binding lectin (PgTeL) with antibacterial activity against human pathogenic species. In this work, the structural stability of PgTeL was evaluated by fluorimetric analysis and the lectin was evaluated for cytotoxicity to human peripheral blood mononuclear cells (PBMCs) and antifungal activity against Candida albicans and Candida krusei. PgTeL folding was impaired when lectin was incubated at pH≥6.0. On the other hand, the lectin did not undergo unfolding even when heated at 100°C. PgTeL (1, 10, and 100µg/mL) was not cytotoxic to PBMCs. Antifungal activity was detected for C. albicans (MIC: 25µg/mL; MFC: 50µg/mL) and C. krusei (MIC and MFC of 12.5µg/mL). Treatment of yeast cells with PgTeL resulted in decrease of intracellular ATP content even at sub-inhibitory concentrations (½MIC and »MIC) and induced lipid peroxidation. In addition, PgTeL damaged the integrity of fungal cell wall of both species, with more pronounced effects in C. krusei. The lectin showed significant antibiofilm activity on C. albicans at sub-inhibitory concentrations (0.195 and 0.39µg/mL). In conclusion, PgTeL is an anti-Candida agent whose action mechanism involves oxidative stress, energetic collapse, damage to the cell wall and rupture of yeast cells.


Asunto(s)
Candida albicans/efectos de los fármacos , Candida/efectos de los fármacos , Lectinas/farmacología , Lythraceae/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida/metabolismo , Candida/ultraestructura , Candida albicans/metabolismo , Candida albicans/ultraestructura , Pared Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Lectinas/química , Lectinas/aislamiento & purificación , Peroxidación de Lípido/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Temperatura
3.
Artículo en Inglés | MEDLINE | ID: mdl-28053639

RESUMEN

Paullinia cupana (Guarana) is a native plant of Amazon region that has very traditional importance. Its seeds are rich in bioactive compounds, including tannins, which exhibit relevant properties. Objective. This study aimed to evaluate antibacterial, antineoplastic, and immunomodulatory activity of P. cupana seeds crude extract (CE) and ethyl-acetate fraction (EAF). Methods. Antibacterial activity was evaluated by determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antineoplastic activity was evaluated by MTT assays in hepatocellular carcinoma (HepG2), breast adenocarcinoma (MCF-7), ductal carcinoma (T47-D), non-Hodgkin's B cell lymphoma (Toledo), T cell leukemia (Jukart), and Acute Leukemia (HL-60) cell lines. BALB/c mice splenocytes were treated to assess IFN-γ, IL-6, IL-17, and IL-10 levels by sandwich ELISA. Results. CE and EAF were not toxic to peripheral blood cells and splenocytes. CE and EAF fractions showed a bacteriostatic activity (MIC = 250 µg/mL) and presented IC50 values of 70.25 µg/mL and 61.18 µg/mL in HL-60 leukemia cell line. All cytokines evaluated had their levels reduced after treatment, following dose-response model. Discussion and Conclusion. Different biological activities were observed for both CE and EAF, suggesting P. cupana as a source of bioactive substances, especially tannins that may be used for several diseases treatments.

4.
Toxicon ; 122: 119-126, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27693304

RESUMEN

This study characterized the protein/peptide profile of venom isolated from the spider Lasiodora sp. (Mygalomorphae, Theraphosidae) found in northeastern Brazil and determined its antimicrobial activity, toxicity against human cells, and hemolytic activity. Protein concentration of the Lasiodora sp. venom was 4.53 ± 0.38 mg/mL. SDS-PAGE showed proteins with molecular masses up to 75 kDa, some of which contained disulfide bridges. RP-HPLC analysis separate at least 12 peaks that were identified by mass spectrometry as peptides U1-theraphotoxin-Lp1a (lasiotoxin-1), U1-theraphotoxin-Lp1c (lasiotoxin-3), U3-theraphotoxin-Lsp1a (LTx5), and ω-theraphotoxin-Asp3a as well as the proteins phospholipase A2 (PLA2) and hyaluronidase. The crude venom exhibited bactericidal effect against Aeromonas sp., Bacillus subtilis, and Micrococcus luteus and fungicidal effect against Candida parapsilosis and Candida albicans. In addition, the venom exerted bacteriostatic effect against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus and fungistatic effect against Candida tropicalis and Candida krusei. The minimum inhibitory (MIC), minimum bactericidal (MBC), and minimum fungicidal (MFC) concentrations ranged from 3.9 to 500 µg/mL. The Lasiodora sp. venom decreased the viability of human peripheral blood mononuclear cells (PBMCs) by 50%-90% at concentrations of 0.1, 1, 10, and 100 µg/mL, promoting apoptosis of these cells. On the other hand, the venom showed weak hemolytic activity against Mus musculus erythrocytes (EC50: 757 µg/mL). In conclusion, the Lasiodora sp. spider venom is a rich source of antimicrobial agents. Future studies will focus on identifying antimicrobial agents present in this venom and evaluating whether these agents contribute to its cytotoxic effects against PBMCs.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Hemólisis/efectos de los fármacos , Venenos de Araña/química , Animales , Humanos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA