Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Physiol ; 106(5): 1224-1234, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608966

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the mechanisms underlying the cardiac protective effect of aerobic training in the progression of a high fructose-induced cardiometabolic disease in Wistar rats? What is the main finding and its importance? At the onset of cardiovascular disease, aerobic training activates the p-p70S6K, ERK and IRß-PI3K-AKT pathways, without changing the miR-126 and miR-195 levels, thereby providing evidence that aerobic training modulates the insulin signalling pathway. These data contribute to the understanding of the molecular cardiac changes that are associated with physiological left ventricular hypertrophy during the development of a cardiovascular disease. ABSTRACT: During the onset of cardiovascular disease (CVD), disturbances in myocardial vascularization, cell proliferation and protein expression are observed. Aerobic training prevents CVD, but the underlying mechanisms behind left ventricle (LV) hypertrophy are not fully elucidated. The aim of this study was to investigate the mechanisms by which aerobic training protects the heart from LV hypertrophy during the onset of fructose-induced cardiometabolic disease. Male Wistar rats were allocated to four groups (n = 8/group): control sedentary (C), control training (CT), fructose sedentary (F) and fructose training (FT). The C and CT groups received drinking water, and the F and FT groups received d-fructose (10% in water). After 2 weeks, the CT and FT rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min/day, 4 days/week). After 10 weeks, LV morphological remodelling, cardiomyocyte apoptosis, microRNAs and the insulin signalling pathway were investigated. The F group had systemic cardiometabolic alterations, which were normalised by aerobic training. The LV weight increased in the FT group, myocardium vascularisation decreased in the F group, and the cardiomyocyte area increased in the CT, F and FT groups. Regarding protein expression, total insulin receptor ß-subunit (IRß) decreased in the F group; phospho (p)-IRß and phosphoinositide 3-kinase (PI3K) increased in the FT group; total-AKT and p-AKT increased in all of the groups; p-p70S6 kinase (p70S6K) protein was higher in the CT group; and p-extracellular signal-regulated kinase (ERK) increased in the CT and FT groups. MiR-126, miR-195 and cardiomyocyte apoptosis did not differ among the groups. Aerobic training activates p-p70S6K and p-ERK, and during the onset of a CVD, it can activate the IRß-PI3K-AKT pathway.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Condicionamiento Físico Animal , Animales , Enfermedades Cardiovasculares/metabolismo , Fructosa/metabolismo , Masculino , Redes y Vías Metabólicas , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Condicionamiento Físico Animal/fisiología , Ratas , Ratas Wistar
2.
Neurol Sci ; 42(4): 1325-1334, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33492565

RESUMEN

The current pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The quarantine period during corona virus disease 19 (COVID-19) outbreak might affect the quality of life leading thousands of individuals to diminish the daily caloric expenditure and mobility, leading to a sedentary behavior and increase the number of health disorders. Exercising is used as a non-pharmacological treatment in many chronic diseases. Here, we review the molecular mechanisms of physical exercise in COVID-19 pandemic on mental health. We also point links between exercise, mental, and cardiovascular health. The infection caused by SARS-CoV-2 affects host cells binding to angiotensin-converting enzyme-2 (ACE2), which is the receptor for SARS-CoV-2. If there is not enough oxygen supply the lungs and other tissues, such as the heart or brain, are affected. SARS-CoV-2 enhances ACE2 leading to inflammation and neuronal death with possible development of mood disorders, such as depression and anxiety. Physical exercise also enhances the ACE2 expression. Conversely, the activation of ACE2/Ang 1-7/Mas axis by physical exercise induces an antiinflammatory and antifibrotic effect. Physical exercise has beneficial effects on mental health enhancing IGF-1, PI3K, BDNF, ERK, and reducing GSK3ß levels. In addition, physical exercise enhances the activity of PGC-1α/ FNDC5/Irisin pathway leading to neuronal survival and the maintenance of a good mental health. Thus, SARS-CoV-2 infection leads to elevation of ACE2 levels through pathological mechanisms that lead to neurological and cardiovascular complications, while the physiological response of ACE2 to physical exercise improves cardiovascular and mental health.


Asunto(s)
Encéfalo/fisiología , COVID-19 , Capacidad Cardiovascular , Sistema Cardiovascular , Ejercicio Físico , Salud Mental , Pandemias , Humanos
3.
Cell Physiol Biochem ; 54(4): 719-735, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32730701

RESUMEN

BACKGROUND/AIMS: The beneficial effect of aerobic exercise training (ET) on cardiac remodeling caused by supravalvar aortic stenosis (AS) has been demonstrated in experimental studies; however, the mechanisms responsible for improving cardiac function are not entirely understood. We evaluated whether ET-generated cardioprotection in pressure-overloaded rats is dependent on cardiomyocyte proliferation, increased angiotensin-(1-7) (Ang-1-7) levels, and its receptor in the myocardium. METHODS: Eighteen weeks after ascending AS surgery, Wistar rats were randomly assigned to four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed) and exercised aortic stenosis (AS-Ex) groups. The moderate treadmill exercise protocol was performed for ten weeks. The functional capacity was assessed by treadmill exercise testing. Cardiac structure and function were evaluated by echocardiogram. Cardiomyocyte proliferation was evaluated by flow cytometry. Expression of cell cycle regulatory genes as CCND2, AURKB, CDK1, and MEIS1 was verified by RT-qPCR. Cardiac and plasma angiotensin I (Ang I), angiotensin II (Ang II), and Ang-(1-7) levels were analyzed by high-performance liquid chromatography (HPLC). The angiotensin-converting enzyme (ACE) activity was assessed by the fluorometric method and protein expression of AT1 and Mas receptors by Western blot. RESULTS: The AS-Ex group showed reduced left ventricular wall relative thickness and improved ejection fraction; also, it showed decreased gene expression of myocyte cell cycle regulators, ACE, Ang I, Ang II and Ang II/Ang-(1-7) ratio levels compared to AS-Sed group. However, ET did not induce alterations in Ang-(1-7) and cardiac Mas receptor expression and myocyte proliferation. CONCLUSION: Aerobic exercise training improves systolic function regardless of myocyte proliferation and Ang-(1-7)/Mas receptor levels. However, the ET negatively modulates the vasoconstrictor/hypertrophic axis (ACE/Ang II) and decreases the expression of negative regulatory genes of the cell cycle in cardiomyocytes of rats with supravalvular aortic stenosis.


Asunto(s)
Angiotensina I/metabolismo , Estenosis Aórtica Supravalvular/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fragmentos de Péptidos/metabolismo , Condicionamiento Físico Animal/fisiología , Sistema Renina-Angiotensina/fisiología , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Estenosis Aórtica Supravalvular/enzimología , Estenosis Aórtica Supravalvular/genética , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Ciclo Celular/genética , Proliferación Celular/fisiología , Cromatografía Líquida de Alta Presión , Ciclina D2/genética , Ciclina D2/metabolismo , Ecocardiografía , Prueba de Esfuerzo , Masculino , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Ratas , Ratas Wistar
4.
Biochem Biophys Res Commun ; 514(4): 1257-1263, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31113617

RESUMEN

The present study aimed to test the hypothesis that high sodium affects the migratory phenotype of endothelial cells (EC) and investigates mechanisms involved independently of hemodynamic factors. Cell migration was evaluated by Wound-Healing at conditions: High Sodium (HS; 160 mM) and Control (CT; 140 mM). O2- production was evaluated by DHE. NADPH oxidase activity was determined by chemiluminescence assay. Expression of adhesion molecules was analyzed by RT-PCR. Shear Stress was performed using a rhythmic shake. Nitric oxide production was measured by Griess reaction. HS-induced impairment in EC migration while both Candesartan and DPI prevented it. HS increased NADPH oxidase activity, which was blocked by Candesartan. Also, HS increased O2- production that was inhibited by Candesartan. HS decreased adhesion molecules expression via ROS (Integrin Alpha 5, Integrin Beta 1, Integrin Beta 3, VE-Cadherin and PECAM) and via AT1R (PECAM). The nitric oxide production induced by shear stress was decreased after EC exposure to HS while both Candesartan and DPI prevented it. Conclusion: This study demonstrated that HS reduced EC migration by AT1R and ROS derived from NADPH Oxidase and mitochondria. The HS reduction in adhesion molecules expression modulated by ROS and AT1R may help to explain the impairment in migration capacity. Also, HS affected EC functionality by reducing their nitric oxide production in response to shear stress.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Cloruro de Sodio/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hemodinámica , Humanos , Fenotipo , Cloruro de Sodio/administración & dosificación
5.
Adv Exp Med Biol ; 1000: 281-322, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29098627

RESUMEN

Exercise training elicits acute and adaptive long term changes in human physiology that mediate the improvement of performance and health state. The responses are integrative and orchestrated by several mechanisms, as gene expression. Gene expression is essential to construct the adaptation of the biological system to exercise training, since there are molecular processes mediating oxidative and non-oxidative metabolism, angiogenesis, cardiac and skeletal myofiber hypertrophy, and other processes that leads to a greater physiological status. Epigenetic is the field that studies about gene expression changes heritable by meiosis and mitosis, by changes in chromatin and DNA conformation, but not in DNA sequence, that studies the regulation on gene expression that is independent of genotype. The field approaches mechanisms of DNA and chromatin conformational changes that inhibit or increase gene expression and determine tissue specific pattern. The three major studied epigenetic mechanisms are DNA methylation, Histone modification, and regulation of noncoding RNA-associated genes. This review elucidates these mechanisms, focusing on the relationship between them and their relationship with exercise training, physical performance and the enhancement of health status. On this chapter, we clarified the relationship of epigenetic modulations and their intimal relationship with acute and chronic effect of exercise training, concentrating our effort on skeletal muscle, heart and vascular responses, that are the most responsive systems against to exercise training and play crucial role on physical performance and improvement of health state.


Asunto(s)
Adaptación Fisiológica/genética , Fenómenos Fisiológicos Cardiovasculares/genética , Epigénesis Genética , Ejercicio Físico/fisiología , Regulación de la Expresión Génica , Animales , Metilación de ADN , Histonas/metabolismo , Humanos , ARN no Traducido/genética
6.
Int J Sports Med ; 38(4): 270-277, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28219104

RESUMEN

To evaluate whether captopril (3×50 mg/day) potentiates post-resistance exercise hypotension (PREH) in hypertensives (HT), 12 HT men received captopril and placebo for 4 weeks each in a double-blinded, randomized-crossover design. On each therapy, subjects underwent 2 sessions: Control (C - rest) and Resistance Exercise (RE - 7 exercises, 3 sets to moderate fatigue, 50% of 1 RM -repetition maximum). Measurements were taken before and after 30-60 min (Post1) and 7 h (Post2), and ambulatory blood pressure (BP) was monitored for 24 h. There were no differences in PREH characteristics and mechanisms between the placebo and captopril periods. At Post1, systolic/diastolic BP decreased significantly and similarly after RE with both therapies (Placebo=-13±2/-9±1 mmHg vs. Captopril=-12±2/-10±1 mmHg, P<0.05). RE reduced cardiac output in some subjects and systemic vascular resistance in others. Heart rate and cardiac sympathetic modulation increased, while stroke volume and baroreflex sensitivity decreased after RE (Placebo: +13±2 bpm, +21±5 nu, -11±5 ml, -4±2 ms/mmHg; Captopril: +13±2 bpm, +35±4 nu, 17±5 ml, -3±1 ms/mmHg, P<0.05). At Post2, all variables returned to pre-intervention values. Ambulatory BP was similar between the sessions. Thus, captopril did not potentiate the magnitude and duration of PREH in HT men, and it did not influence PREH mechanisms.


Asunto(s)
Captopril/administración & dosificación , Hipertensión/fisiopatología , Hipotensión Posejercicio/tratamiento farmacológico , Entrenamiento de Fuerza , Antihipertensivos/administración & dosificación , Presión Sanguínea , Estudios Cruzados , Método Doble Ciego , Frecuencia Cardíaca , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Volumen Sistólico , Resistencia Vascular
7.
J Mol Cell Cardiol ; 90: 111-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26705058

RESUMEN

We tested the effects of early mesenchymal stem cell (MSC) therapy associated with endurance exercise on the structural and functional cardiac remodeling of rats with myocardial infarctation (MI). Male Wistar rats (40 days old) were divided into 6 groups: control and exercise sham; control and exercise MI; and control and exercise MI MSC. MI was surgically induced and bone marrow-derived MSCs were immediately injected via caudal vein (concentration: 1 × 10(6 )cells). Twenty-four hours later ET groups exercised on a treadmill (5 days/week; 60 min/day; 60% of maximal running velocity) for 12 weeks. Structural and functional changes were determined by echocardiography. Contractility and intracellular global calcium ([Ca(2 +)]i) transient were measured in myocytes from the left ventricular (LV) non-infarcted area. Calcium regulatory proteins were measured by Western blot. MI increased (p < 0.05) heart, ventricular and LV weights and its ratios to body weight; LV internal dimension in diastole (LVID-D) and in systole (LVID-S) and LV free wall in diastole (LVFW-D), but reduced the thickness of interventricular septum in systole (IVS-S), ejection fraction (EF) and fractional shortening (FS). MI augmented (p < 0.05) the times to peak and to half relaxation of cell shortening as well as the amplitude of the [Ca(2 +)]i transient and the times to peak and to half decay. Early MSCs therapy restored LVFW-D, IVS-S and the amplitude and time to half decay of the [Ca(2 +)]i transient. Early endurance exercise intervention increased (p < 0.05) LVFW-S, IVS-S, EF and FS, and reduced the times to peak and to half relaxation of cell shortening, and the amplitude of the [Ca(2 +)]i transient. Exercise training also increased the expression of left ventricular SERCA2a and PLBser16. Nevertheless, the combination of these therapies did not cause additive effects. In conclusion, combining early MSCs therapy and endurance exercise does not potentiate the benefits of such treatments to structural and functional cardiac remodeling in infarcted rats.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio/terapia , Condicionamiento Físico Animal , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diástole , Ecocardiografía , Expresión Génica , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Contracción Miocárdica/fisiología , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Resistencia Física , Ratas , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sístole , Remodelación Ventricular
8.
Clin Sci (Lond) ; 130(22): 2005-2015, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27503950

RESUMEN

Aerobic exercise-induced cardiac hypertrophy (CH) is a physiological response involving accurate orchestration of gene and protein expression of contractile and metabolic components. The microRNAs: miR-208a, miR-208b and miR-499 are each encoded by a myosin gene and thus are also known as 'MyomiRs', regulating several mRNA targets that in turn regulate CH and metabolic pathways. To understand the role of myomiRs in the fine-tuning of cardiac myosin heavy chain (MHC) isoform expression by exercise training-induced physiological hypertrophy, Wistar rats were subjected to two different swim training protocols. We observed that high-volume swim training (T2), improved cardiac diastolic function, induced CH and decreased the expression of miR-208a and miR-208b Consequently, the increased expression of their targets, sex determining region y-related transcription factor 6 (Sox6), Med13, Purß, specificity proteins (Sp)/Krüppel-like transcription factor 3 (SP3) and HP1ß (heterochromatin protein 1ß) was more prominent in T2, thus converging to modulate cardiac metabolic and contractile adaptation by exercise training, with an improvement in the α-MHC/ß-MHC ratio, bypassing the increase in PPARß and histone deacetylase (HDAC) class I and II regulation. Altogether, we conclude that high-volume swim training finely assures physiological cardiac remodelling by epigenetic regulation of myomiRs, because inhibition of miR-208a and miR-208b increases the expression of their target proteins and stimulates the interaction among metabolic, contractile and epigenetic genes.

9.
Physiol Genomics ; 47(2): 13-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25465030

RESUMEN

Peripheral blood cells are an accessible environment in which to visualize exercise-induced alterations in global gene expression patterns. We aimed to identify a peripheral blood mononuclear cell (PBMC) signature represented by alterations in gene expression, in response to a standardized endurance exercise training protocol. In addition, we searched for molecular classifiers of the variability in oxygen uptake (V̇o2). Healthy untrained policemen recruits (n = 13, 25 ± 3 yr) were selected. Peak V̇o2 (measured by cardiopulmonary exercise testing) and total RNA from PBMCs were obtained before and after 18 wk of running endurance training (3 times/wk, 60 min). Total RNA was used for whole genome expression analysis using Affymetrix GeneChip Human Gene 1.0 ST. Data were normalized by the robust multiarray average algorithm. Principal component analysis was used to perform correlations between baseline gene expression and V̇o2peak. A set of 211 transcripts was differentially expressed (ANOVA, P < 0.05 and fold change > 1.3). Functional enrichment analysis revealed that transcripts were mainly related to immune function, cell cycle processes, development, and growth. Baseline expression of 98 and 53 transcripts was associated with the absolute and relative V̇o2peak response, respectively, with a strong correlation (r > 0.75, P < 0.01), and this panel was able to classify the 13 individuals according to their potential to improve oxygen uptake. A subset of 10 transcripts represented these signatures to a similar extent. PBMCs reveal a transcriptional signature responsive to endurance training. Additionally, a baseline transcriptional signature was associated with changes in V̇o2peak. Results might illustrate the possibility of obtaining molecular classifiers of endurance capacity changes through a minimally invasive blood sampling procedure.


Asunto(s)
Ejercicio Físico/fisiología , Leucocitos Mononucleares/fisiología , Resistencia Física/genética , Transcriptoma , Adulto , Algoritmos , Prueba de Esfuerzo/métodos , Regulación de la Expresión Génica , Humanos , Masculino , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Carrera
10.
Int J Mol Sci ; 16(4): 6855-67, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25822872

RESUMEN

AIMS: To determine the effects of resistance training (RT) on the expression of microRNA (miRNA)-214 and its target in sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), and on the morphological and mechanical properties of isolated left ventricular myocytes. MAIN METHODS: Male Wistar rats were divided into two groups (n = 7/group): Control (CO) or trained (TR). The exercise-training protocol consisted of: 4 × 12 bouts, 5×/week during 8 weeks, with 80% of one repetition maximum. KEY FINDINGS: RT increased the left ventricular myocyte width by 15% and volume by 12%, compared with control animals (p < 0.05). The time to half relaxation and time to peak were 8.4% and 4.4% lower, respectively, in cells from TR group as compared to CO group (p < 0.05). RT decreased miRNA-214 level by 18.5% while its target SERCA2a expression were 18.5% higher (p < 0.05). SIGNIFICANCE: Our findings showed that RT increases single left ventricular myocyte dimensions and also leads to faster cell contraction and relaxation. These mechanical adaptations may be related to the augmented expression of SERCA2a which, in turn, may be associated with the epigenetic modification of decreased miRNA-214 expression.


Asunto(s)
MicroARNs/genética , Miocitos Cardíacos/fisiología , Entrenamiento de Fuerza/métodos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Animales , Pruebas de Función Cardíaca , Ventrículos Cardíacos/citología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Tamaño de los Órganos , Ratas , Ratas Wistar
11.
Artículo en Inglés | MEDLINE | ID: mdl-38213844

RESUMEN

Natural compounds that have the potential to act as antimicrobials and antitumors are a constant search in the field of pharmacotherapy. Eragrostis plana NEES (Poaceae) is a grass with high allelopathic potential. Allelopathy is associated with compounds generated in the primary and secondary metabolism of the plant, which act to protect it from phytopathogens. Tabernaemontana catharinensis A DC (Apocynaceae), a tree in which its leaves and bark are used for the preparation of extracts and infusions that have anti-inflammatory and antinociceptive effects, is attributed to its phytochemical constitution. The objective of this study was to elucidate the phytochemical constitution, the antibacterial potential, the toxicity against immune system cells, hemolytic potential, and antitumor effect of methanolic extracts of E. plana and T. catharinensis. The phytochemical investigation was carried out using the UHPLC-QTOF MS equipment. The antibacterial activity was tested using the broth microdilution plate assay, against Gram-negative and Gram-positive strains, and cytotoxicity assays were performed on human peripheral blood mononuclear cells (PBMC) and in vitro hemolysis. Antitumor activity was performed against the colon cancer cell line (CT26). Results were expressed as mean and standard deviation and analyzed by ANOVA. p < 0.05 was considered significant. More than 19 possible phytochemical constituents were identified for each plant, with emphasis on phenolic compounds (acids: vanillic, caffeic, and quinic) and alkaloids (alstovenine, rhyncophylline, amezepine, voacangine, and coronaridine). Both extracts showed antibacterial activity at concentrations below 500 µg/mL and were able to decrease the viability of CT26 at concentrations below 2000 µg/mL, without showing cytotoxic effect on PBMCs and in vitro hemolysis at the highest concentration tested. This is the first report of the activity of E. plana and T. catharinensis extracts against colon cancer cell line (CT26). Studies should be carried out to verify possible molecular targets involved in the antitumor effect in vivo.

12.
Curr Hypertens Rev ; 20(1): 52-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38258772

RESUMEN

Arterial hypertension is a multifactorial clinical condition characterized by higher blood pressure levels. The main treatment for controlling high blood pressure consists of drug therapy, but the scientific literature has been pointing to the efficiency of aerobic and resistance exercises acting in a therapeutic and/or preventive way to reduce and control the blood pressure levels. Resistance training is characterized by sets and repetitions on a given muscle segment that uses overload, such as machine weights, bars, and dumbbells. As it successfully affects a number of variables associated to practitioners' functional and physiological features as well as emotional and social variables, resistance training has been a crucial part of physical exercise programs. Several reports highlight the various adaptive responses it provides, with a focus on the improvement in strength, balance, and muscular endurance that enables a more active and healthy lifestyle. Resistance training programs that are acute, sub-chronic, or chronic can help people with varying ages, conditions, and pathologies reduce their arterial hypertension. However, molecular mechanisms associated with resistance training to reduce blood pressure still need to be better understood. Thus, we aimed to understand the main effects of resistance training on blood pressure as well as the associated molecular mechanisms.


Asunto(s)
Presión Sanguínea , Hipertensión , Entrenamiento de Fuerza , Humanos , Hipertensión/fisiopatología , Hipertensión/terapia , Hipertensión/prevención & control , Hipertensión/diagnóstico , Presión Sanguínea/efectos de los fármacos , Resultado del Tratamiento , Músculo Esquelético/fisiopatología , Fuerza Muscular , Animales
13.
J Mol Cell Cardiol ; 57: 119-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23376037

RESUMEN

The aim of the present study was to verify the effects of low-intensity endurance training and detraining on the mechanical and molecular properties of cardiomyocytes from spontaneously hypertensive rats (SHRs). Male SHRs and normotensive control Wistar rats at 16-weeks of age were randomly divided into eight groups of eight animals: NC8 and HC8 (normotensive and hypertensive control for 8weeks); NT8 and HT8 (normotensive and hypertensive trained at 50-60% of maximal exercise capacity for 8weeks); NC12 and HC12 (normotensive and hypertensive control for 12weeks); NDT and HDT (normotensive and hypertensive trained for 8weeks and detrained for 4weeks). The total exercise time until fatigue (TTF) was determined by a maximal exercise capacity test. Resting heart rate (RHR) and systolic arterial pressure (SAP) were measured. After the treatments, animals were killed by cervical dislocation and left ventricular myocytes were isolated by enzymatic dispersion. Isolated cells were used to determine intracellular global Ca(2+) ([Ca(2+)]i) transient and cardiomyocyte contractility (1Hz; ~25°C). [Ca(2+)]i regulatory proteins were measured by Western blot, and the markers of pathologic cardiac hypertrophy by quantitative real-time polymerase chain reaction (q-RT-PCR). Exercise training augmented the TTF (NC8, 11.4±1.5min vs. NT8, 22.5±1.4min; HC8, 11.7±1.4min vs. HT8, 24.5±1.3min; P<0.05), reduced RHR (NT8initial, 340±8bpm vs. NT8final, 322±10bpm; HT8initial, 369±8bpm vs. HT8final, 344±10bpm; P<0.05), and SBP in SHR animals (HC8, 178±3mmHg vs. HT8, 161±4mmHg; P<0.05). HC8 rats showed a slower [Ca(2+)]i transient (Tpeak, 83.7±1.8ms vs. 71.7±2.4ms; T50%decay, 284.0±4.3ms vs. 264.0±4.1ms; P<0.05) and cell contractility (Vshortening, 86.1±6.7µm/s vs. 118.6±6.7µm/s; Vrelengthening, 57.5±7.4µm/s vs. 101.3±7.4µm/s; P<0.05), and higher expression of ANF (300%; P<0.05), skeletal α-actin (250%; P<0.05) and a decreased α/ß-MHC ratio (70%; P<0.05) compared to NC8. Exercise training increased [Ca(2+)]i transient (NC8, 2.39±0.06F/F0 vs. NT8, 2.72±0.06F/F0; HC8, 2.28±0.05F/F0 vs. HT8, 2.82±0.05F/F0; P<0.05), and cell contractility (NC8, 7.4±0.3% vs. NT8, 8.4±0.3%; HC8, 6.8±0.3% vs. HT8, 7.8±0.3%; P<0.05). Furthermore, exercise normalized the expression of ANF, skeletal α-actin, and the α/ß-MHC ratio in HT8 rats, augmented the expression of SERCA2a (NC8, 0.93±0.15 vs. NT8, 1.49±0.14; HC8, 0.83±0.13 vs. HT8, 1.32±0.14; P<0.05) and PLBser16 (NC8, 0.89±0.18 vs. NT8, 1.23±0.17; HC8, 0.77±0.17 vs. HT8, 1.32±0.16; P<0.05), and reduced PLBt/SERCA2a (NC8, 1.21±0.19 vs. NT8, 0.50±0.21; HC8, 1.38±0.17 vs. HT8, 0.66±0.21; P<0.05). However, all these adaptations returned to control values within 4weeks of detraining in both SHR and normotensive control animals. In conclusion, low-intensity endurance training induces positive benefits to left ventricular myocyte mechanical and molecular properties, which are reversed within 4weeks of detraining.


Asunto(s)
Hipertensión/terapia , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Terapia por Ejercicio , Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Cadenas Pesadas de Miosina/metabolismo , Condicionamiento Físico Animal , Resistencia Física , Ratas , Ratas Endogámicas SHR , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
14.
J Cardiovasc Pharmacol ; 59(1): 58-65, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21921804

RESUMEN

Activation of renin-angiotensin system has been linked to cardiovascular and autonomic dysfunctions in diabetes. Experiments were performed to investigate the effects of angiotensin-converting enzyme inhibitor (ACEI), enalapril, on cardiac and autonomic functions in diabetic rats. Diabetes was induced by streptozotocin (50 mg/kg), and rats were treated with enalapril (1 mg · kg(-1) · d(-1)). After 30 days, evaluations were performed in control, diabetic, and enalapril-treated groups. Cardiac function was evaluated by echocardiography and through cannulation of the left ventricle (at baseline and in response to volume overload). Heart rate and systolic blood pressure variabilities were evaluated in the time and frequency domains. Streptozotocin rats had left ventricular systolic and diastolic dysfunctions, expressed by reduced ejection fraction and increased isovolumic relaxation time. The ACEI prevented these changes, improved diastolic cardiac responses to volume overload and total power of heart rate variability, reduced the ACE1 activity and protein expression and cardiac angiotensin (Ang) II levels, and increased angiotensin-converting enzyme 2 activity, despite unchanged blood pressure. Correlations were obtained between Ang II content with systolic and diastolic functions and heart rate variability. These findings provide evidence that the low-dose ACEI prevents autonomic and cardiac dysfunctions induced by diabetes without changing blood pressure and associated with reduced cardiac Ang II and increased angiotensin-converting enzyme 2 activity.


Asunto(s)
Angiotensina II/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Sistema Nervioso Autónomo/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Enalapril/uso terapéutico , Corazón/efectos de los fármacos , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Animales , Sistema Nervioso Autónomo/fisiopatología , Glucemia/análisis , Presión Sanguínea/efectos de los fármacos , Western Blotting , Peso Corporal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Relación Dosis-Respuesta a Droga , Electrocardiografía , Enalapril/administración & dosificación , Corazón/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Miocardio/enzimología , Peptidil-Dipeptidasa A/metabolismo , Ratas , Ratas Wistar , Sistema Renina-Angiotensina/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
15.
Obes Facts ; 15(2): 105-117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051942

RESUMEN

Obesity is a worldwide epidemic affecting over 13% of the adult population and is defined by an excess of body fat that predisposes comorbidities. It is considered a multifactorial disease in which environmental and genetic factors interact, and it is a risk marker for cardiovascular disease. Lifestyle modifications remain the mainstay of treatment for obesity based on adequate diet and physical exercise. In addition, obesity is related to cardiovascular and skeletal muscle disorders, such as cardiac hypertrophy, microvascular rarefaction, and skeletal muscle atrophy. The discovery of obesity-involved molecular pathways is an important step to improve both the prevention and management of this disease. MicroRNAs (miRNAs) are a class of gene regulators which bind most commonly, but not exclusively, to the 3'-untranslated regions of messenger RNAs of protein-coding genes and negatively regulate their expression. Considerable effort has been made to identify miRNAs and target genes that predispose to obesity. Besides their intracellular function, recent studies have demonstrated that miRNAs can be exported or released by cells and circulate within the blood in a remarkably stable form. The discovery of circulating miRNAs opens up intriguing possibilities for the use of circulating miRNA patterns as biomarkers for obesity and cardiovascular diseases. The aim of this review is to provide an overview of the recent discoveries of the role played by miRNAs in the obese phenotype and associated comorbidities. Furthermore, we will discuss the role of exercise training on regulating miRNAs, indicating the mechanisms related to these alterations.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Biomarcadores , Enfermedades Cardiovasculares/genética , Ejercicio Físico/fisiología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/terapia
16.
Life Sci ; 241: 117098, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31794773

RESUMEN

INTRODUCTION: Sepsis survivors are at higher risk for cardiovascular events. Lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4) in sepsis. Activation of TLR4 modulates vascular smooth muscle cells (VSMCs) phenotype and contributes to cardiovascular changes after sepsis. AIM: Investigate changes in VSMCs phenotype caused by LPS-induced TLR4 activation. METHODS: Rat VSMCs were incubated with LPS. Two incubation conditions were used in cell contraction and migration assays: acute stimulation - LPS stimulus was initiated at the beginning of the assay and maintained throughout; and preconditioning - LPS stimulation was applied prior to the assay then discontinued. Nitric oxide (NO) production, mRNA expression of cytokines and phenotype markers, and interleukin (IL)-6 production were evaluated. KEY FINDINGS: LPS increased gene expression of IL-1ß, IL-6, TNFα and MCP-1 (p < .001), of secretory phenotype markers collagen and vimentin (p < .0479) and of the contractile marker smooth muscle 22α (SM22α) (p = .0067). LPS exposure increased IL-6 secretion after 24 and 48 h (p < .0001), and NO at 8 and 24 h (p < .0249) via inducible nitric oxide synthase (iNOS), as demonstrated by a decrease in NO after incubation with aminoguanidine. Acute stimulation with LPS reduced migration and contraction in a NO-dependent manner, while preconditioning with LPS increased both in an IL-6-dependent manner. SIGNIFICANCE: LPS affects VSMCs by modulating their secretory, contractile and migratory phenotypes. LPS acute stimulation of VSMCs promoted a NO-dependent reduction in migration and contraction, while preconditioning with LPS promoted IL-6-dependent increases in migration and contraction, evidencing that VSMCs can present phenotype modifications that persist after sepsis, thereby contributing to postsepsis cardiovascular events.


Asunto(s)
Lipopolisacáridos/toxicidad , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Sepsis/fisiopatología , Animales , Aorta Torácica/citología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Contracción Muscular/fisiología , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiología , Óxido Nítrico , Fenotipo , Ratas Wistar
17.
Life Sci ; 252: 117650, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32294475

RESUMEN

It has been described that the cardiac dysfunction in the obesity model is because of collagen imbalance and that angiotensin II (Ang II) contributes to myocardial fibrosis. However, it remains undefined if changes in collagen I and III metabolism in obesity is due to the renin-angiotensin system (RAS) dysregulation from myocardium or excessive adipose tissue. AIM: This study aimed to verify whether the changes in myocardial collagen metabolism result from RAS deregulation of cardiac or adipose tissue in an obesity model. MAIN METHODS: Wistar rats were fed with control (CD) and high-fat (HFD) diets for 30 weeks. After the dietary intervention, animals were assigned to be treated with losartan at the 30 mg/kg/day dosage or kept untreated for an additional five weeks. KEY FINDINGS: HFD induced obesity, comorbidities, and cardiac collagen overexpression. The HFD group presented an increase in Ang II levels in both adipose tissue and plasma, as well as AT1 receptor expression in cardiac tissue. Of note, the myocardial Ang II was not changed in the HFD group. Losartan administration reduced some obesity-induced comorbidities regardless of weight loss. The AT1 receptor blockade also decreased the release of Ang II from adipose tissue and myocardial AT1 receptor and collagen. SIGNIFICANCE: It was seen that excessive adipose tissue is responsible for the exacerbated circulating Ang II, which induced cardiac fibrosis development.


Asunto(s)
Tejido Adiposo/metabolismo , Angiotensina II/metabolismo , Miocardio/patología , Obesidad/fisiopatología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Dieta Alta en Grasa/efectos adversos , Fibrosis , Losartán/farmacología , Masculino , Miocardio/metabolismo , Ratas , Ratas Wistar , Sistema Renina-Angiotensina/fisiología
18.
Oxid Med Cell Longev ; 2020: 5603580, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32454941

RESUMEN

Ancestral obesogenic exposure is able to trigger harmful effects in the offspring left ventricle (LV) which could lead to cardiovascular diseases. However, the impact of the father's lifestyle on the offspring LV is largely unexplored. The aim of this study was to investigate the effects of 8 weeks of paternal resistance training (RT) on the offspring left ventricle (LV) proteome exposed to control or high-fat (HF) diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, 3 times per week with weights secured to the animals' tails). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into 4 groups (5 animals per group): offspring from sedentary fathers, exposed to control diet (SFO-C); offspring from trained fathers, exposed to control diet (TFO-C); offspring from sedentary fathers, exposed to high-fat diet (SFO-HF); and offspring from trained fathers, exposed to high-fat diet (TFO-HF). The LC-MS/MS analysis revealed 537 regulated proteins among groups. Offspring exposure to HF diet caused reduction in the abundance levels of proteins related to cell component organization, metabolic processes, and transport. Proteins related to antioxidant activity, transport, and transcription regulation were increased in TFO-C and TFO-HF as compared with the SFO-C and SFO-HF groups. Paternal RT demonstrated to be an important intervention capable of inducing significant effects on the LV proteome regardless of offspring diet due to the increase of proteins involved into LV homeostasis maintenance. This study contributes to a better understanding of the molecular aspects involved in transgenerational inheritance.


Asunto(s)
Dieta Alta en Grasa , Ventrículos Cardíacos/metabolismo , Proteoma/metabolismo , Entrenamiento de Fuerza , Aerobiosis , Animales , Peso Corporal , Conducta Alimentaria , Masculino , Tamaño de los Órganos , Ratas Wistar , Transducción de Señal
19.
J Mol Med (Berl) ; 86(6): 715-22, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18385968

RESUMEN

A brain renin angiotensin system (RAS) and its role in cardiovascular control and fluid homeostasis was at first controversial. This was because a circulating kidney-derived renin angiotensin system was so similar and well established. But, the pursuit of brain RAS has proven to be correct. In the course of accepting brain RAS, high standards of proof attracted state of the art techniques in all the new developments of biology. Consequently, brain RAS is a robust concept that has enlightened neuroscience as well as cardiovascular physiology and is a model neuropeptide system. Molecular biology confirmed the components of brain RAS and their location in the brain. Transgenic mice and rats bearing renin and extra copies of angiotensinogen genes revealed the importance of brain RAS. Cre-lox delivery in vectors has enabled pinpoint gene deletion of brain RAS in discrete brain nuclei. The new concept of brain RAS includes ACE-2, Ang1-7, and prorenin and Mas receptors. Angiotensin II (ANG II) generated in the brain by brain renin has many neural effects. It activates behavioral effects by selective activation of ANG II receptor subtypes in different locations. It regulates sympathetic activity and baroreflexes and contributes to neurogenic hypertension. New findings implicate brain RAS in a much wider range of neural effects. We review brain RAS involvement in Alzheimer's disease, stroke memory, and learning alcoholism stress depression. There is growing evidence to consider developing treatment strategies for a variety of neurological disease states based on brain RAS.


Asunto(s)
Angiotensinas/metabolismo , Encéfalo/metabolismo , Enfermedad , Renina/metabolismo , Animales , Eliminación de Gen , Humanos , Memoria
20.
Clin Med Res ; 5(2): 114-20, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17607046

RESUMEN

OBJECTIVE: The purpose of this study was to follow the ventricular function and cardiac hypertrophy in rats undergoing a resistance-training program for a period of 3 months. DESIGN: Forty animals were divided into two major groups: control (n=16) and resistance trained (n=24). From the resistance-trained group, 12 animals were resistance trained for 1 month and another 12 for 3 months. The resistance-training protocol was performed with 4 sets of 12 repetitions using 65% to 75% of one repetition maximum (maximum lifted weight with the exercise apparatus). METHODS: Echocardiographic analysis was performed at the beginning of the resistance-training period and at the end of each month. The repetition maximum was measured every 2 weeks. Cardiac hypertrophy was determined by echocardiography, by the absolute weight of the cardiac chambers and by histology of the left ventricle. RESULTS: Before resistance training, both groups had similar repetition maximums, ranging from 1.8-fold to 2-fold the body weight; however, at the end of the resistance-training period, the repetition maximum of the resistance-trained group was 6-fold greater than the body weight. The left ventricular mass as assessed by echocardiography was 8%, 12% and 16% larger in the resistance-trained group than in the control group in the first, second and third months, respectively. This hypertrophy showed a similar increase in the interventricular septum and in the free posterior wall mass. There was no reduction in the end-diastolic left ventricular internal diameter during the 3-month resistance-training period. Systolic function did not differ between the groups throughout the resistance-training period. CONCLUSION: Resistance training induces the development of concentric cardiac hypertrophy without ventricular dysfunction or cavity reduction. Although diastolic function was not completely investigated, we cannot exclude the possibility that resistance training results in diastolic dysfunction.


Asunto(s)
Adaptación Fisiológica , Hipertrofia Ventricular Izquierda/fisiopatología , Condicionamiento Físico Animal/métodos , Disfunción Ventricular Izquierda/fisiopatología , Anestesia , Animales , Diástole , Modelos Animales de Enfermedad , Ecocardiografía , Frecuencia Cardíaca , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/patología , Masculino , Miocardio/patología , Tamaño de los Órganos , Ratas , Ratas Wistar , Sístole , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA