RESUMEN
Spinal cord injury triggers a strong innate inflammatory response in both non-regenerative mammals and regenerative zebrafish. Neutrophils are the first immune population to be recruited to the injury site. Yet, their role in the repair process, particularly in a regenerative context, remains largely unknown. Here, we show that, following rapid recruitment to the injured spinal cord, neutrophils mostly reverse migrate throughout the zebrafish body. In addition, promoting neutrophil inflammation resolution by inhibiting Cxcr4 boosts cellular and functional regeneration. Neutrophil-specific RNA-seq analysis reveals an enhanced activation state that correlates with a transient increase in tnf-α expression in macrophage/microglia populations. Conversely, blocking neutrophil recruitment through Cxcr1/2 inhibition diminishes the presence of macrophage/microglia at the injury site and impairs spinal cord regeneration. Altogether, these findings provide new insights into the role of neutrophils in spinal cord regeneration, emphasizing the significant impact of their immune profile on the outcome of the repair process.
Asunto(s)
Neutrófilos , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Médula Espinal , Pez Cebra , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Regeneración de la Medula Espinal/fisiología , Médula Espinal/inmunología , Médula Espinal/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Microglía/metabolismo , Microglía/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Receptores CXCR4/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Infiltración Neutrófila/fisiología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Vertebrate heart development requires spatiotemporal regulation of gene expression to specify cardiomyocytes, increase the cardiomyocyte population through proliferation, and to establish and maintain atrial and ventricular cardiac chamber identities. The evolutionarily conserved chromatin factor Gon4-like (Gon4l), encoded by the zebrafish ugly duckling (udu) locus, has previously been implicated in cell proliferation, cell survival, and specification of mesoderm-derived tissues including blood and somites, but its role in heart formation has not been studied. Here we report two distinct roles of Gon4l/Udu in heart development: regulation of cell proliferation and maintenance of ventricular identity. We show that zygotic loss of udu expression causes a significant reduction in cardiomyocyte number at one day post fertilization that becomes exacerbated during later development. We present evidence that the cardiomyocyte deficiency in udu mutants results from reduced cell proliferation, unlike hematopoietic deficiencies attributed to TP53-dependent apoptosis. We also demonstrate that expression of the G1/S-phase cell cycle regulator, cyclin E2 (ccne2), is reduced in udu mutant hearts, and that the Gon4l protein associates with regulatory regions of the ccne2 gene during early embryogenesis. Furthermore, udu mutant hearts exhibit a decrease in the proportion of ventricular cardiomyocytes compared to atrial cardiomyocytes, concomitant with progressive reduction of nkx2.5 expression. We further demonstrate that udu and nkx2.5 interact to maintain the proportion of ventricular cardiomyocytes during development. However, we find that ectopic expression of nkx2.5 is not sufficient to restore ventricular chamber identity suggesting that Gon4l regulates cardiac chamber patterning via multiple pathways. Together, our findings define a novel role for zygotically-expressed Gon4l in coordinating cardiomyocyte proliferation and chamber identity maintenance during cardiac development.
Asunto(s)
Factores de Unión al ADN Específico de las Células Eritroides/metabolismo , Corazón/embriología , Miocitos Cardíacos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Cromatina/metabolismo , Factores de Unión al ADN Específico de las Células Eritroides/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Atrios Cardíacos/embriología , Atrios Cardíacos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Fase S/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiologíaRESUMEN
NKX2-5 is the most commonly mutated gene associated with human congenital heart defects (CHDs), with a predilection for cardiac pole abnormalities. This homeodomain transcription factor is a central regulator of cardiac development and is expressed in both the first and second heart fields (FHF and SHF). We have previously revealed essential functions of nkx2.5 and nkx2.7, two Nkx2-5 homologs expressed in zebrafish cardiomyocytes, in maintaining ventricular identity. However, the differential roles of these genes in the specific subpopulations of the anterior (aSHF) and posterior (pSHF) SHFs have yet to be fully defined. Here, we show that Nkx genes regulate aSHF and pSHF progenitors through independent mechanisms. We demonstrate that Nkx genes restrict proliferation of aSHF progenitors in the outflow tract, delimit the number of pSHF progenitors at the venous pole and pattern the sinoatrial node acting through Isl1 repression. Moreover, optical mapping highlights the requirement for Nkx gene dose in establishing electrophysiological chamber identity and in integrating the physiological connectivity of FHF and SHF cardiomyocytes. Ultimately, our results may shed light on the discrete errors responsible for NKX2-5-dependent human CHDs of the cardiac outflow and inflow tracts.
Asunto(s)
Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/genética , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Humanos , MutaciónRESUMEN
The Ku heterodimer serves in the initial step in repairing DNA double-strand breaks by the non-homologous end-joining pathway. Besides this key function, Ku also plays a role in other cellular processes including telomere maintenance. Inactivation of Ku can lead to DNA repair defects and telomere aberrations. In model organisms where Ku has been studied, inactivation can lead to DNA repair defects and telomere aberrations. In general Ku deficient mutants are viable, but a notable exception to this is human where Ku has been found to be essential. Here we report that similar to the situation in human Ku is required for cell proliferation in the fungus Ustilago maydis. Using conditional strains for Ku expression, we found that cells arrest permanently in G2 phase when Ku expression is turned off. Arrest results from cell cycle checkpoint activation due to persistent signaling via the DNA damage response (DDR). Our results point to the telomeres as the most likely source of the DNA damage signal. Inactivation of the DDR makes the Ku complex dispensable for proliferation in this organism. Our findings suggest that in U. maydis, unprotected telomeres arising from Ku depletion are the source of the signal that activates the DDR leading to cell cycle arrest.
Asunto(s)
Antígenos Nucleares/fisiología , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Telómero/metabolismo , Antígenos Nucleares/genética , Daño del ADN , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Autoantígeno Ku , Transducción de Señal , Telómero/química , Homeostasis del Telómero , Ustilago/genéticaRESUMEN
In the phytopathogenic fungus Ustilago maydis, the dikaryotic state dominates the period of growth occurring during the infectious phase. Dikaryons are cells in which two nuclei, one from each parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion. In fungal cells, maintenance of the dikaryotic state requires an intricate cell division process that often involves the formation of a structure known as the clamp connection as well as the sorting of one of the nuclei to this structure to ensure that each daughter dikaryon inherits a balance of each parental genome. Here, we describe an atypical role of the DNA damage checkpoint kinases Chk1 and Atr1 during pathogenic growth of U. maydis. We found that Chk1 and Atr1 collaborate to control cell cycle arrest during the induction of the virulence program in U. maydis and that Chk1 and Atr1 work together to control the dikaryon formation. These findings uncover a link between a widely conserved signaling cascade and the virulence program in a phytopathogen. We propose a model in which adjustment of the cell cycle by the Atr1-Chk1 axis controls fidelity in dikaryon formation. Therefore, Chk1 and Atr1 emerge as critical cell type regulators in addition to their roles in the DNA damage response.
Asunto(s)
Daño del ADN , Transducción de Señal , Ustilago/crecimiento & desarrollo , Zea mays/microbiología , Ciclo Celular , Núcleo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Activación Enzimática , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Fosforilación , Proteínas Quinasas/metabolismo , Ustilago/citología , Ustilago/enzimología , Ustilago/patogenicidad , VirulenciaRESUMEN
The vascular system is inefficiently repaired after spinal cord injury (SCI) in mammals, resulting in secondary tissue damage and immune deregulation that contribute to the limited functional recovery. Unlike mammals, zebrafish can repair the spinal cord (SC) and restore motility, but the vascular response to injury has not been investigated. Here, we describe the zebrafish SC blood vasculature, starting in development with the initial vessel ingression in a body size-dependent manner, the acquisition of perivascular support and the establishment of ventral to dorsal blood circulation. The vascular organization grows in complexity and displays multiple barrier specializations in adulthood. After injury, vessels rapidly regrow into the lesion, preceding the glial bridge and axons. Vascular repair involves an early burst of angiogenesis that creates dysmorphic and leaky vessels. Dysfunctional vessels are later removed, as pericytes are recruited and the blood-SC barrier is re-established. This study demonstrates that zebrafish can successfully re-vascularize the spinal tissue, reinforcing the value of this organism as a regenerative model for SCI.
Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Pez Cebra , Animales , Médula Espinal/irrigación sanguínea , Neovascularización PatológicaRESUMEN
The cardiac developmental network has been associated with myocardial regenerative potential. However, the embryonic signals triggered following injury have yet to be fully elucidated. Nkx2.5 is a key causative transcription factor associated with human congenital heart disease and one of the earliest markers of cardiac progenitors, thus it serves as a promising candidate. Here, we show that cardiac-specific RNA-sequencing studies reveal a disrupted embryonic transcriptional profile in the adult Nkx2.5 loss-of-function myocardium. nkx2.5-/- fish exhibit an impaired ability to recover following ventricular apex amputation with diminished dedifferentiation and proliferation. Complex network analyses illuminate that Nkx2.5 is required to provoke proteolytic pathways necessary for sarcomere disassembly and to mount a proliferative response for cardiomyocyte renewal. Moreover, Nkx2.5 targets embedded in these distinct gene regulatory modules coordinate appropriate, multi-faceted injury responses. Altogether, our findings support a previously unrecognized, Nkx2.5-dependent regenerative circuit that invokes myocardial cell cycle re-entry, proteolysis, and mitochondrial metabolism to ensure effective regeneration in the teleost heart.
Asunto(s)
Miocardio , Miocitos Cardíacos , Animales , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.
Asunto(s)
Integrasas/metabolismo , Recombinación Genética/genética , Animales , Codón/genética , Ingeniería Genética/métodos , Integrasas/genética , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/efectos de la radiación , Recombinación Genética/efectos de la radiaciónRESUMEN
Direct visualization of metabolic dynamics in living animals with high spatial and temporal resolution is essential to understanding many biological processes. Here we introduce a platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy to image in situ metabolic activities. Enzymatic incorporation of D2O-derived deuterium into macromolecules generates carbon-deuterium (C-D) bonds, which track biosynthesis in tissues and can be imaged by SRS in situ. Within the broad vibrational spectra of C-D bonds, we discover lipid-, protein-, and DNA-specific Raman shifts and develop spectral unmixing methods to obtain C-D signals with macromolecular selectivity. DO-SRS microscopy enables us to probe de novo lipogenesis in animals, image protein biosynthesis without tissue bias, and simultaneously visualize lipid and protein metabolism and reveal their different dynamics. DO-SRS microscopy, being noninvasive, universally applicable, and cost-effective, can be adapted to a broad range of biological systems to study development, tissue homeostasis, aging, and tumor heterogeneity.
Asunto(s)
Metabolismo , Imagen Óptica/métodos , Espectrometría Raman , Animales , Células COS , Caenorhabditis elegans , Carbono/química , Línea Celular Tumoral , Chlorocebus aethiops , Medios de Contraste , Deuterio , Óxido de Deuterio , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Metabolismo de los Lípidos , Lípidos/química , Sustancias Macromoleculares , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Dispersión de Radiación , Pez CebraRESUMEN
DNA damage response (DDR) leads to DNA repair, and depending on the extent of the damage, to further events, including cell death. Evidence suggests that cell differentiation may also be a consequence of the DDR. During the formation of the infective hypha in the phytopathogenic fungus Ustilago maydis, two DDR kinases, Atr1 and Chk1, are required to induce a G2 cell cycle arrest, which in turn is essential to display the virulence program. However, the triggering factor of DDR in this process has remained elusive. In this report we provide data suggesting that no DNA damage is associated with the activation of the DDR during the formation of the infective filament in U. maydis. We have analyzed bulk DNA replication during the formation of the infective filament, and we found no signs of impaired DNA replication. Furthermore, using RPA-GFP fusion as a surrogate marker of the presence of DNA damage, we were unable to detect any sign of DNA damage at the cellular level. In addition, neither MRN nor 9-1-1 complexes, both instrumental to transmit the DNA damage signal, are required for the induction of the above mentioned cell cycle arrest, as well as for virulence. In contrast, we have found that the claspin-like protein Mrc1, which in other systems serves as scaffold for Atr1 and Chk1, was required for both processes. We discuss possible alternative ways to trigger the DDR, independent of DNA damage, in U. maydis during virulence program activation.
Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Ustilago/metabolismo , Citoesqueleto de Actina/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Plantas/microbiología , Transducción de Señal , Ustilago/citología , Ustilago/patogenicidad , VirulenciaRESUMEN
Here we report identification of the lkh1 gene encoding a LAMMER kinase homolog (Lkh1) from a screen for DNA repair-deficient mutants in Ustilago maydis. The mutant allele isolated results from a mutation at glutamine codon 488 to a stop codon that would be predicted to lead to truncation of the carboxy-terminal kinase domain of the protein. This mutant (lkh1(Q488*)) is highly sensitive to ultraviolet light, methyl methanesulfonate, and hydroxyurea. In contrast, a null mutant (lkh1Δ) deleted of the entire lkh1 gene has a less severe phenotype. No epistasis was observed when an lkh1(Q488*)rad51Δ double mutant was tested for genotoxin sensitivity. However, overexpressing the gene for Rad51, its regulator Brh2, or the Brh2 regulator Dss1 partially restored genotoxin resistance of the lkh1Δ and lkh1(Q488*) mutants. Deletion of lkh1 in a chk1Δ mutant enabled these double mutant cells to continue to cycle when challenged with hydroxyurea. lkh1Δ and lkh1(Q488*) mutants were able to complete the meiotic process but exhibited reduced heteroallelic recombination and aberrant chromosome segregation. The observations suggest that Lkh1 serves in some aspect of cell cycle regulation after DNA damage or replication stress and that it also contributes to proper chromosome segregation in meiosis.
Asunto(s)
Inestabilidad Genómica , Proteínas Quinasas/metabolismo , Ustilago/enzimología , Ustilago/genética , Ciclo Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Clonación Molecular , Reparación del ADN , Epistasis Genética/efectos de los fármacos , Proteínas Fúngicas , Prueba de Complementación Genética , Pruebas Genéticas , Hidroxiurea/farmacología , Meiosis/efectos de los fármacos , Metilmetanosulfonato/farmacología , Mutación/genética , Fenotipo , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Rayos Ultravioleta , Ustilago/citología , Ustilago/efectos de los fármacosRESUMEN
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.
Asunto(s)
Agaricales/genética , Puntos de Control del Ciclo Celular , Daño del ADN , Meiosis , Agaricales/metabolismo , Agaricales/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Esporas Fúngicas/fisiologíaRESUMEN
In a large group of fungi, mating results in a dikaryon, a cell in which the two nuclei--one from each parent cell--share a single cytoplasm for a period of time without undergoing nuclear fusion. The dikaryon stage is typical in the life cycles of many fungal species primarily in the Basidiomycota, a large group that includes mushrooms, bracket fungi and many phytopathogenic fungi, such as the corn pathogen Ustilago maydis. Recently, we described that in U. maydis two conserved DNA-damage checkpoint kinases, Chk1 and Atr1, work together to control the dikaryon formation. However, how this pathway is activated during the dikaryon formation and how its activation/deactivation is coordinated with the different cell cycle phases is unknown. Here we propose and discuss several hypothesis to address these questions.