Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 476(1): 101-113, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30563945

RESUMEN

Frutalin (FTL) is a multiple-binding lectin belonging to the jacalin-related lectin (JRL) family and derived from Artocarpus incisa (breadfruit) seeds. This lectin specifically recognizes and binds α-d-galactose. FTL has been successfully used in immunobiological research for the recognition of cancer-associated oligosaccharides. However, the molecular bases by which FTL promotes these specific activities remain poorly understood. Here, we report the whole 3D structure of FTL for the first time, as determined by X-ray crystallography. The obtained crystals diffracted to 1.81 Å (Apo-frutalin) and 1.65 Å (frutalin-d-Gal complex) of resolution. The lectin exhibits post-translational cleavage yielding an α- (133 amino acids) and ß-chain (20 amino acids), presenting a homotetramer when in solution, with a typical JRL ß-prism. The ß-prism was composed of three 4-stranded ß-sheets forming three antiparallel Greek key motifs. The carbohydrate-binding site (CBS) involved the N-terminus of the α-chain and was formed by four key residues: Gly25, Tyr146, Trp147 and Asp149. Together, these results were used in molecular dynamics simulations in aqueous solutions to shed light on the molecular basis of FTL-ligand binding. The simulations suggest that Thr-Ser-Ser-Asn (TSSN) peptide excision reduces the rigidity of the FTL CBS, increasing the number of interactions with ligands and resulting in multiple-binding sites and anomeric recognition of α-d-galactose sugar moieties. Our findings provide a new perspective to further elucidate the versatility of FTL in many biological activities.


Asunto(s)
Artocarpus/química , Galactosa/química , Galectinas/química , Semillas/química , Sitios de Unión , Relación Estructura-Actividad , Especificidad por Sustrato
2.
Int J Biol Macromol ; 121: 429-442, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30326222

RESUMEN

Plant lectins are carbohydrate-binding proteins, which can interact with cell surfaces to initiate anti-inflammatory pathways, as well as immunomodulatory functions. Here, we have extracted, purified and part-characterized the bioactivity of Jacalin, Frutalin, DAL and PNA, before evaluating their potential for wound healing in cultured human skin fibroblasts. Only Frutalin stimulated fibroblast migration in vitro, prompting further studies which established its low cytotoxicity and interaction with TLR4 receptors. Frutalin also increased p-ERK expression and stimulated IL-6 secretion. The in vivo potential of Frutalin for wound healing was then assessed in hybrid combination with the polysaccharide galactomannan, purified from Caesalpinia pulcherrima seeds, using both hydrogel and membrane scaffolds formulations. Physical-chemical characterization of the hybrid showed that lectin-galactomannan interactions increased the pseudoplastic behaviour of solutions, reducing viscosity and increasing Frutalin's concentration. Furthermore, infrared spectroscopy revealed -OH band displacement, likely caused by interaction of Frutalin with galactose residues present on galactomannan chains, while average membrane porosity was 100 µm, sufficient to ensure water vapor permeability. Accelerated angiogenesis and increased fibroblast and keratinocyte proliferation were observed with the optimal hybrid recovering the lesioned area after 11 days. Our findings indicate Frutalin as a biomolecule with potential for tissue repair, regeneration and chronic wound healing.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Galectinas/química , Hidrogeles/química , Mananos/química , Membranas Artificiales , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Línea Celular , Galactosa/análogos & derivados , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo
3.
Biosci Rep ; 37(4)2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28684550

RESUMEN

Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin (FTP) and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. FTP is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically active recombinant FTP in Escherichia coli BL21, optimizing conditions with the best set yielding >40 mg/l culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/ml of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP-mannose and FTP-glucose crystals were obtained, and they diffracted X-rays to a resolution of 1.58 (P212121), 1.70 (P3121) and 1.60 (P3121) Å respectively. The best solution showed four monomers per asymmetric unit. Molecular dynamics (MD) simulation suggested that FTP displays higher affinity for mannose than glucose. Cell studies revealed that FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/ml and was also capable of stimulating cell migration at 50 µg/ml. In conclusion, our optimized expression system allowed high amounts of correctly folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example in wound healing and tissue regeneration.


Asunto(s)
Artocarpus/genética , Expresión Génica , Glucosa/química , Manosa/química , Lectinas de Plantas , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Lectinas de Plantas/biosíntesis , Lectinas de Plantas/química , Lectinas de Plantas/genética , Dominios Proteicos
4.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1282-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457519

RESUMEN

Frutalin is an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and is a powerful tool for tumour biomarker discovery. The crystallization and preliminary X-ray diffraction analysis of this lectin, which was isolated from Artocarpus incisa seeds, are reported here. Frutalin was purified and submitted to mass-spectrometric analysis. Diverse masses at approximately 16 kDa were observed in the deconvoluted spectra, which support the presence of isoforms. The best frutalin crystals were grown within a week in 0.1 M citric acid pH 3.5 which contained 25% PEG 3350 as a precipitant at 293 K, and diffracted to a maximum resolution of 1.81 Å. The monoclinic crystals belonged to space group I2, with unit-cell parameters a = 76.17, b = 74.56, c = 118.98 Å, ß = 96.56°. A molecular-replacement solution was obtained which indicated the presence of four monomers per asymmetric unit. Crystallographic refinement of the structure is in progress.


Asunto(s)
Artocarpus/química , Galactosa/metabolismo , Galectinas/química , Lectinas/química , Semillas/química , Cristalización , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA