Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Planta ; 259(1): 25, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108922

RESUMEN

MAIN CONCLUSION: Xanthoria parietina survivability in Mars-like conditions was supported by water-lysis efficiency recovery and antioxidant content balancing with ROS production after 30 days of exposure. Xanthoria parietina (L.) Th. Fr. is a widespread lichen showing tolerance against air pollutants and UV-radiation. It has been tested under space-like and Mars-like conditions resulting in high recovery performances. Hereby, we aim to assess the mechanisms at the basis of the thalli resilience against multiple space stress factors. Living thalli of X. parietina were exposed to simulated Martian atmospheric conditions (Dark Mars) and UV radiation (Full Mars). Then, we monitored as vitality indicator the photosynthetic efficiency, assessed by in vivo chlorophyll emission fluorescence measurements (FM; FV/F0). The physiological defense was evaluated by analyzing the thalli antioxidant capacity. The drop of FM and FV/F0 immediately after the exposure indicated a reduction of photosynthesis. After 24 h from exposure, photosynthetic efficiency began to recover suggesting the occurrence of protective mechanisms. Antioxidant concentrations were higher during the exposure, only decreasing after 30 days. The recovery of photosynthetic efficiency in both treatments suggested a strong resilience by the photosynthetic apparatus against combined space stress factors, likely due to the boosted antioxidants at the beginning and their depletion at the end of the exposure. The overall results indicated that the production of antioxidants, along with the occurrence of photoprotection mechanisms, guarantee X. parietina survivability in Mars-like environment.


Asunto(s)
Marte , Resiliencia Psicológica , Antioxidantes , Medio Ambiente Extraterrestre , Estrés Oxidativo , Fotosíntesis
2.
Environ Microbiol ; 24(7): 2938-2950, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35437941

RESUMEN

The Moon is characterized by extremely harsh conditions due to ultraviolet irradiation, wide temperature extremes, vacuum resulting from the absence of an atmosphere and high ionizing radiation. Therefore, its surface may provide a unique platform to investigate the effects of such conditions. For lunar exploration with the Lunar Gateway platform, exposure experiments in Low Earth Orbit are useful testbeds to prepare for lunar space experiments and to understand how and if potential biomarkers are influenced by extra-terrestrial conditions. During the BIOMEX (BIOlogy and Mars EXperiment) project, dried colonies of the fungus Cryomyces antarcticus grown on Lunar Regolith Analogue (LRA) were exposed to space conditions for 16 months aboard the EXPOSE-R2 payload outside the International Space Station. In this study, we investigated the stability/degradation of fungal biomarkers in LRA after exposure to (i) simulated space and (ii) real space conditions, using Raman spectroscopy, gas chromatography-mass spectrometry and DNA amplification. The results demonstrated that fungal biomarkers were detectable after 16 months of real space exposure. This work will contribute to the interpretation of data from future biological experiments in the Cislunar orbit with the Lunar Gateway platform and/or on the lunar surface, in preparation for the next step of human exploration.


Asunto(s)
Luna , Vuelo Espacial , Atmósfera , Planeta Tierra , Medio Ambiente Extraterrestre , Humanos , Rayos Ultravioleta
3.
Environ Microbiol ; 23(7): 4002-4016, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33538384

RESUMEN

The diversity and composition of Antarctic cryptoendolithic microbial communities in the Mars-analogue site of Helliwell Hills (Northern Victoria Land, Continental Antarctica) are investigated, for the first time, applying both culture-dependent and high-throughput sequencing approaches. The study includes all the domains of the tree of life: Eukaryotes, Bacteria and Archaea to give a complete overview of biodiversity and community structure. Furthermore, to explore the geographic distribution of endoliths throughout the Victoria Land (Continental Antarctica), we compared the fungal and bacterial community composition and structure of endolithically colonized rocks, collected in >30 sites in 10 years of Italian Antarctic Expeditions. Compared with the fungi and other eukaryotes, the prokaryotic communities were richer in species, more diverse and highly heterogeneous. Despite the diverse community compositions, shared populations were found and were dominant in all sites. Local diversification was observed and included prokaryotes as members of Alphaproteobacteria and Crenarchaeota (Archaea), the last detected for the first time in these cryptoendolithic communities. Few eukaryotes, namely lichen-forming fungal species as Lecidella grenii, were detected in Helliwell Hills only. These findings suggest that geographic distance and isolation in these remote areas may promote the establishment of peculiar locally diversified microorganisms.


Asunto(s)
Hongos , Microbiota , Regiones Antárticas , Bacterias/genética , Biodiversidad , Hongos/genética
4.
Environ Microbiol ; 23(7): 3727-3742, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33476085

RESUMEN

Kombucha is a multispecies microbial ecosystem mainly composed of acetic acid bacteria and osmophilic acid-tolerant yeasts, which is used to produce a probiotic drink. Furthermore, Kombucha Mutualistic Community (KMC) has been recently proposed to be used during long space missions as both a living functional fermented product to improve astronauts' health and an efficient source of bacterial nanocellulose. In this study, we compared KMC structure and functions before and after samples were exposed to the space/Mars-like environment outside the International Space Station in order to investigate the changes related to their re-adaptation to Earth-like conditions by shotgun metagenomics, using both diversity and functional analyses of Community Ecology and Complex Networks approach. Our study revealed that the long-term exposure to space/Mars-like conditions on low Earth orbit may disorganize the KMC to such extent that it will not restore the initial community structure; however, KMC core microorganisms of the community were maintained. Nonetheless, there were no significant differences in the community functions, meaning that the KMC communities are ecologically resilient. Therefore, despite the extremely harsh conditions, key KMC species revived and provided the community with the genetic background needed to survive long periods of time under extraterrestrial conditions.


Asunto(s)
Medio Ambiente Extraterrestre , Vuelo Espacial , Planeta Tierra , Ecosistema , Metagenoma , Metagenómica
5.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483268

RESUMEN

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Asunto(s)
Bacterias/aislamiento & purificación , Ecosistema , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Clima Desértico , Suelo/química , América del Sur
6.
Orig Life Evol Biosph ; 47(2): 187-202, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27033201

RESUMEN

The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.


Asunto(s)
Ascomicetos , Regiones Antárticas , Exobiología , Medio Ambiente Extraterrestre , Rayos Ultravioleta
7.
Orig Life Evol Biosph ; 46(2-3): 311-21, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26526425

RESUMEN

The lichen Xanthoria elegans has been exposed to space and simulated Mars-analogue environment in the Lichen and Fungi Experiment (LIFE) on the EXPOSE-E facility at the International Space Station (ISS). This long-term exposure of 559 days tested the ability of various organisms to cope with either low earth orbit (LEO) or Mars-analogue conditions, such as vacuum, Mars-analogue atmosphere, rapid temperature cycling, cosmic radiation of up to 215 ± 16 mGy, and insolation of accumulated doses up to 4.87 GJm(-2), including up to 0.314 GJm(-2) of UV irradiation. In a previous study, X. elegans demonstrated considerable resistance towards these conditions by means of photosynthetic activity as well as by post-exposure metabolic activity of 50-80% in the algal and 60-90% in the fungal symbiont (Brandt et al. Int J Astrobiol 14(3):411-425, 2015). The two objectives of the present study were complementary: First, to verify the high post-exposure viability by using a qualitative cultivation assay. Second, to characterise the cellular damages by transmission electron microscopy (TEM) which were caused by the space and Mars-analogue exposure conditions of LIFE. Since the algal symbiont of lichens is considered as the more susceptible partner (de Vera and Ott 2010), the analyses focused on the photobiont. The study demonstrated growth and proliferation of the isolated photobiont after all exposure conditions of LIFE. The ultrastructural analysis of the algal cells provided an insight to cellular damages caused by long-term exposure and highlighted that desiccation-induced breakdown of cellular integrity is more pronounced under the more severe space vacuum than under Mars-analogue atmospheric conditions. In conclusion, desiccation-induced damages were identified as a major threat to the photobiont of X. elegans. Nonetheless, a fraction of the photobiont cells remained cultivable after all exposure conditions tested in LIFE.


Asunto(s)
Atmósfera/análisis , Medio Ambiente Extraterrestre , Líquenes/efectos de la radiación , Marte , Fotosíntesis/efectos de la radiación , Simulación del Espacio , Radiación Cósmica , Planeta Tierra , Exobiología , Humanos , Líquenes/fisiología , Nave Espacial , Rayos Ultravioleta
8.
Orig Life Evol Biosph ; 46(2-3): 289-310, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26530341

RESUMEN

The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m(2) of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.


Asunto(s)
Atmósfera/análisis , Cianobacterias/efectos de la radiación , Medio Ambiente Extraterrestre , Marte , Fotosíntesis/efectos de la radiación , Simulación del Espacio , Cianobacterias/fisiología , ADN Bacteriano/genética , Planeta Tierra , Exobiología , Humanos , Nave Espacial , Esporas Bacterianas/fisiología , Esporas Bacterianas/efectos de la radiación , Rayos Ultravioleta
9.
Orig Life Evol Biosph ; 44(3): 209-21, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25351683

RESUMEN

In the context of future exposure missions in Low Earth Orbit and possibly on the Moon, two desert strains of the cyanobacterium Chroococcidiopsis, strains CCMEE 029 and 057, mixed or not with a lunar mineral analogue, were exposed to fractionated fluencies of UVC and polychromatic UV (200-400 nm) and to space vacuum. These experiments were carried out within the framework of the BIOMEX (BIOlogy and Mars EXperiment) project, which aims at broadening our knowledge of mineral-microorganism interaction and the stability/degradation of their macromolecules when exposed to space and simulated Martian conditions. The presence of mineral analogues provided a protective effect, preserving survivability and integrity of DNA and photosynthetic pigments, as revealed by testing colony-forming abilities, performing PCR-based assays and using confocal laser scanning microscopy. In particular, DNA and pigments were still detectable after 500 kJ/m(2) of polychromatic UV and space vacuum (10(-4) Pa), corresponding to conditions expected during one-year exposure in Low Earth Orbit on board the EXPOSE-R2 platform in the presence of 0.1 % Neutral Density (ND) filter. After exposure to high UV fluencies (800 MJ/m(2)) in the presence of minerals, however, altered fluorescence emission spectrum of the photosynthetic pigments were detected, whereas DNA was still amplified by PCR. The present paper considers the implications of such findings for the detection of biosignatures in extraterrestrial conditions and for putative future lunar missions.


Asunto(s)
Cianobacterias/efectos de los fármacos , ADN Bacteriano/química , Fotosíntesis/efectos de los fármacos , Simulación del Espacio , Recuento de Colonia Microbiana , Cianobacterias/genética , Cianobacterias/crecimiento & desarrollo , Cianobacterias/efectos de la radiación , Daño del ADN , ADN Bacteriano/genética , Medio Ambiente Extraterrestre , Marte , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Minerales/farmacología , Luna , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Reacción en Cadena de la Polimerasa , Rayos Ultravioleta/efectos adversos
10.
Sci Rep ; 13(1): 4893, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966209

RESUMEN

Xanthoria parietina (L.) Th. Fr. is a widely spread foliose lichen showing high tolerance against UV-radiation thanks to parietin, a secondary lichen substance. We exposed samples of X. parietina under simulated Martian conditions for 30 days to explore its survivability. The lichen's vitality was monitored via chlorophyll a fluorescence that gives an indication for active light reaction of photosynthesis, performing in situ and after-treatment analyses. Raman spectroscopy and TEM were used to evaluate carotenoid preservation and possible variations in the photobiont's ultrastructure respectively. Significant differences in the photo-efficiency between UV irradiated samples and dark-kept samples were observed. Fluorescence values correlated with temperature and humidity day-night cycles. The photo-efficiency recovery showed that UV irradiation caused significant effects on the photosynthetic light reaction. Raman spectroscopy showed that the carotenoid signal from UV exposed samples decreased significantly after the exposure. TEM observations confirmed that UV exposed samples were the most affected by the treatment, showing chloroplastidial disorganization in photobionts' cells. Overall, X. parietina was able to survive the simulated Mars conditions, and for this reason it may be considered as a candidate for space long-term space exposure and evaluations of the parietin photodegradability.


Asunto(s)
Líquenes , Marte , Clorofila A , Medio Ambiente Extraterrestre , Carotenoides
11.
NPJ Microgravity ; 9(1): 43, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308480

RESUMEN

Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry. In this perspective, the European Space Agency (ESA) Topical Team Astrobiology and Astrochemistry (with feedback from the wider scientific community) identifies a number of key topics and summarizes the 2021 "ESA SciSpacE Science Community White Paper" for astrobiology and astrochemistry. We highlight recommendations for the development and implementation of future experiments, discuss types of in situ measurements, experimental parameters, exposure scenarios and orbits, and identify knowledge gaps and how to advance scientific utilization of future space-exposure platforms that are either currently under development or in an advanced planning stage. In addition to the ISS, these platforms include CubeSats and SmallSats, as well as larger platforms such as the Lunar Orbital Gateway. We also provide an outlook for in situ experiments on the Moon and Mars, and welcome new possibilities to support the search for exoplanets and potential biosignatures within and beyond our solar system.

12.
Sci Rep ; 12(1): 8437, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589950

RESUMEN

Despite the increasing interest in using microbial-based technologies to support human space exploration, many unknowns remain not only on bioprocesses but also on microbial survivability and genetic stability under non-Earth conditions. Here the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated for robustness of the repair capability of DNA lesions accumulated under Mars-like conditions (UV radiation and atmosphere) simulated in low Earth orbit using the EXPOSE-R2 facility installed outside the International Space Station. Genomic alterations were determined in a space-derivate of Chroococcidiopsis sp. CCMEE 029 obtained upon reactivation on Earth of the space-exposed cells. Comparative analysis of whole-genome sequences showed no increased variant numbers in the space-derivate compared to triplicates of the reference strain maintained on the ground. This result advanced cyanobacteria-based technologies to support human space exploration.


Asunto(s)
Cianobacterias , Marte , Vuelo Espacial , Cianobacterias/genética , Planeta Tierra , Medio Ambiente Extraterrestre , Genómica , Humanos , Rayos Ultravioleta
13.
Front Microbiol ; 13: 749396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633719

RESUMEN

The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.

14.
Astrobiology ; 22(10): 1199-1209, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36194868

RESUMEN

The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.


Asunto(s)
Cianobacterias , Marte , Biomarcadores , Cianobacterias/efectos de la radiación , Medio Ambiente Extraterrestre , Minerales , Radiación Ionizante
15.
Sci Rep ; 12(1): 12580, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869252

RESUMEN

Understanding the impact of long-term exposure of microorganisms to space is critical in understanding how these exposures impact the evolution and adaptation of microbial life under space conditions. In this work we subjected Nostoc sp. CCCryo 231-06, a cyanobacterium capable of living under many different ecological conditions, and also surviving in extreme ones, to a 23-month stay at the International Space Station (the Biology and Mars Experiment, BIOMEX, on the EXPOSE-R2 platform) and returned it to Earth for single-cell genome analysis. We used microfluidic technology and single cell sequencing to identify the changes that occurred in the whole genome of single Nostoc cells. The variant profile showed that biofilm and photosystem associated loci were the most altered, with an increased variant rate of synonymous base pair substitutions. The cause(s) of these non-random alterations and their implications to the evolutionary potential of single bacterial cells under long-term cosmic exposure warrants further investigation.


Asunto(s)
Exobiología , Nostoc , Planeta Tierra , Medio Ambiente Extraterrestre , Nostoc/genética , Rayos Ultravioleta
16.
Astrobiology ; 22(9): 1072-1080, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35714354

RESUMEN

The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of ARGs in the microbial cultures or communities) under stress in outer space environments. In this study, we aimed to experimentally investigate the dynamics of ARGs and metal resistance genes (MRGs) in Kombucha Mutualistic Community (KMC) samples exposed to Mars-like conditions simulated during the BIOMEX experiment outside the International Space Station with analysis of the metagenomics data previously produced. Thus, we compared them with those of the respective non-exposed KMC samples. The antibiotic resistome responded to the Mars-like conditions by enriching its diversity with ARGs after exposure, which were not found in non-exposed samples (i.e., tet and van genes against tetracycline and vancomycin, respectively). Furthermore, ARGs and MRGs were correlated; therefore, their co-selection could be assumed as a mechanism for maintaining antibiotic resistance in Mars-like environments. Overall, these results highlight the high plasticity of the antibiotic resistome in response to extraterrestrial conditions and in the absence of anthropogenic stresses.


Asunto(s)
Antibacterianos , Metagenoma , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Metagenómica
17.
Appl Spectrosc ; 76(6): 723-729, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35128962

RESUMEN

Organic molecules are prime targets in the search for life on other planetary bodies in the Solar System. Understanding their preservation potential and detectability after ionic irradiation, with fluences potentially representing those received for several millions to billions of years at Mars or in interplanetary space, is a crucial goal for astrobiology research. In order to be able to perform in situ characterization of such organic molecules under ionic irradiation in the near future, a feasibility experiment was performed with polymer test samples to validate the optical configuration and the irradiation chamber geometry. We present here a Raman in situ investigation of the evolution of a series of polymers during proton irradiation. To achieve this goal, a new type of Raman optical probe was designed, which documented that proton irradiation (with a final fluence of 3.1014 at·cm-2) leads to an increase in the background level of the signal, potentially explained by the scission of the polymeric chains and by atom displacements creating defects in the materials. To improve the setup further, a micro-Raman probe and a temperature-controlled sample holder are under development to provide higher spectral and spatial resolutions (by reducing the depth of field and laser spot size), to permit Raman mapping as well as to avoid any thermal effects.


Asunto(s)
Protones , Espectrometría Raman , Exobiología/métodos , Rayos Láser , Espectrometría Raman/métodos , Temperatura
18.
iScience ; 25(5): 104291, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35573199

RESUMEN

The Nostoc sp. strain CCCryo 231-06 is a cyanobacterial strain capable of surviving under extreme conditions and thus is of great interest for the astrobiology community. The knowledge of its complete genome sequence would serve as a guide for further studies. However, a major concern has been placed on the effects of contamination on the quality of sequencing data without a reference genome. Here, we report the use of microfluidic technology combined with single cell sequencing and de novo assembly to minimize the contamination and recover the complete genome of the Nostoc strain CCCryo 231-06 with high quality. 100% of the whole genome was recovered with all contaminants removed and a strongly supported phylogenetic tree. The data reported can be useful for comparative genomics for phylogenetic and taxonomic studies. The method used in this work can be applied to studies that require high-quality assemblies of genomes of unknown microorganisms.

19.
J Microbiol Biotechnol ; 32(8): 967-975, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-35879284

RESUMEN

Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.


Asunto(s)
Acetobacteraceae , Metagenoma , Celulosa , Levaduras
20.
Front Microbiol ; 13: 782175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369445

RESUMEN

Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA