Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Trends Immunol ; 39(9): 748-763, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30077656

RESUMEN

Immunotherapy is revolutionizing cancer treatment; however, complete responses are achieved in only a small fraction of patients and tumor types. Thus, there is an urgent need for predictive preclinical models to drive rational immunotherapeutic drug development, treatment combinations, and to minimize failures in clinical trials. Humanized mouse models (HIS) have been developed to study and modulate the interactions between immune components and tumors of human origin. In this review, we discuss recent advances in the 'humanization' of mouse models to improve the quality of human immune cell reconstitution. We also highlight new insights into the basic mechanisms, and provide a preclinical evaluation of onco-immunotherapies, as well as the limitations thereof, which constitute drivers for the improvement of the models to increase their translational power.


Asunto(s)
Neoplasias/inmunología , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Huésped Inmunocomprometido/genética , Huésped Inmunocomprometido/inmunología , Inmunoterapia/métodos , Ratones , Ratones Transgénicos , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Investigación , Escape del Tumor/genética , Microambiente Tumoral/genética
2.
Nat Commun ; 11(1): 3272, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601304

RESUMEN

Tumor-draining lymph node (TDLN) invasion by metastatic cells in breast cancer correlates with poor prognosis and is associated with local immunosuppression, which can be partly mediated by regulatory T cells (Tregs). Here, we study Tregs from matched tumor-invaded and non-invaded TDLNs, and breast tumors. We observe that Treg frequencies increase with nodal invasion, and that Tregs express higher levels of co-inhibitory/stimulatory receptors than effector cells. Also, while Tregs show conserved suppressive function in TDLN and tumor, conventional T cells (Tconvs) in TDLNs proliferate and produce Th1-inflammatory cytokines, but are dysfunctional in the tumor. We describe a common transcriptomic signature shared by Tregs from tumors and nodes, including CD80, which is significantly associated with poor patient survival. TCR RNA-sequencing analysis indicates trafficking between TDLNs and tumors and ongoing Tconv/Treg conversion. Overall, TDLN Tregs are functional and express a distinct pattern of druggable co-receptors, highlighting their potential as targets for cancer immunotherapy.


Asunto(s)
Ganglios Linfáticos/patología , Metástasis Linfática/inmunología , Linfocitos T Reguladores/inmunología , Antígeno B7-1/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Terapia de Inmunosupresión , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Metástasis Linfática/patología , Linfocitos T Reguladores/metabolismo
3.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932728

RESUMEN

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Asunto(s)
Adyuvantes Inmunológicos/química , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Melanoma Experimental/inmunología , Ratones , Nanopartículas , Medicina de Precisión , Primates , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , Vacunación , Vacunas Conjugadas
4.
Cancer Immunol Res ; 7(3): 443-457, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30651291

RESUMEN

High-dose IL2 immunotherapy can induce long-lasting cancer regression but is toxic and insufficiently efficacious. Improvements are obtained with IL2/anti-IL2 complexes (IL2Cx), which redirect IL2 action to CD8+ T and natural killer (NK) cells. Here, we evaluated the efficacy of combining IL2Cx with blockade of inhibitory immune pathways. In an autochthonous lung adenocarcinoma model, we show that the IL2Cx/anti-PD-1 combination increases CD8+ T-cell infiltration of the lung and controls tumor growth. In the B16-OVA model, which is resistant to checkpoint inhibition, combination of IL2Cx with PD-1 or CTLA-4 pathway blockade reverses that resistance. Both combinations work by reinvigorating exhausted intratumoral CD8+ T cells and by increasing the breadth of tumor-specific T-cell responses. However, only the IL2Cx/anti-CTLA-4 combination is able to rescue NK cell antitumor function by modulating intratumoral regulatory T cells. Overall, association of IL2Cx with PD-1 or CTLA-4 pathway blockade acts by different cellular mechanisms, paving the way for the rational design of combinatorial antitumor therapies.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Complejo Antígeno-Anticuerpo/uso terapéutico , Antígeno CTLA-4/inmunología , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Inmunoterapia , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
5.
Oncoimmunology ; 8(5): e1581556, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069145

RESUMEN

Although immune checkpoint inhibitors have shown improvement in survival in comparison to chemotherapy in urothelial bladder cancer, many patients still fail to respond to these treatments and actual efforts are made to identify predictive factors of response to immunotherapy. Understanding the tumor-intrinsic molecular basis, like oncogenic pathways conditioning the presence or absence of tumor-infiltrating T cells (TILs), should provide a new rationale for improved anti-tumor immune therapies. In this study, we found that urothelial bladder cancer from human samples bearing PIK3CA gene mutations was significantly associated with lower expression of a defined immune gene signature, compared to unmutated ones. We identified a reduced 10-gene immune gene signature that discriminates muscle-invasive bladder cancer (MIBC) samples according to immune infiltration and PIK3CA mutation. Using a humanized mouse model, we observed that BKM120, a pan-PI3K inhibitor, significantly inhibited the growth of a human bladder cancer cell line bearing a PIK3CA mutation, associated to increased immune cell infiltration (hCD45+). Using qRT-PCR, we also found an increase in the expression of chemokines and immune genes in PIK3CA-mutated tumors from mice treated with BKM120, reflecting an active immune infiltrate in comparison to untreated ones. Moreover, the addition of BKM120 rendered PIK3CA-mutated tumors sensitive to PD-1 blockade. Our results provide a relevant rationale for combination strategies of PI3K inhibitors with immune checkpoint inhibitors to overcome resistance to immune checkpoint inhibitors.

6.
Vaccine ; 34(27): 3093-3101, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27154391

RESUMEN

Heparan sulfates (HS) are carbohydrate moieties of HS proteoglycans (HSPGs). They often represent alternative attachment points for proteins or microorganisms targeting receptors. HSPGs, which are ubiquitously expressed, thereby participate in numerous biological processes. We previously showed that MHC class II-restricted antigen presentation is increased when antigens are coupled to HS ligands, suggesting that HSPGs might contribute to adaptive immune responses. Here, we examined if HSPG targeting influences other aspects of immune responses. We found that coupling of an HS ligand to the antigen increases antigen presentation to CD4(+) and CD8(+) T-cells after antigen targeting to membrane immunoglobulins or to MHC-II molecules. Moreover, this increased stimulating capacity correlates with an enhanced CD8(+) immune response in mice. Last, animals control more effectively the growth of Ova-expressing tumour cells when they are immunized with an Ova construct targeting HSPGs and MHC-II molecules. Our results indicate that ubiquitous molecules can influence both MHC class I- and MHC class II-restricted antigen presentation and behave as co-receptors during T-cell stimulation. Moreover, they suggest that tumour-antigens endowed with the ability to target both HSPGs and MHC-II molecules could be of value to increase CD8(+) immune response and control tumour-growth, opening new perspectives for the design of highly immunogenic protein-based vaccines.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Proteoglicanos de Heparán Sulfato/inmunología , Inmunidad Adaptativa , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Activación de Linfocitos , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/inmunología
7.
Oncoimmunology ; 5(7): e1171434, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27622021

RESUMEN

Antibody-drug conjugates (ADC), combining the specificity of tumor recognition by monoclonal antibodies (mAb) and the powerful cytotoxicity of anticancer drugs, are currently under growing interest and development. Here, we studied the potential of Chi-Tn, a mAb directed to a glyco-peptidic tumor-associated antigen, to be used as an ADC for cancer treatment. First, we demonstrated that Chi-Tn specifically targeted tumor cells in vivo. Also, using flow cytometry and deconvolution microscopy, we showed that the Chi-Tn mAb is rapidly internalized - condition necessary to ensure the delivery of conjugated cytotoxic drugs in an active form, and targeted to early and recycling endosomes. When conjugated to saporin (SAP) or to auristatin F, the Chi-Tn ADC exhibited effective cytotoxicity to Tn-positive tumor cells in vitro, which correlated with the level of tumoral Tn expression. Furthermore, the Chi-Tn mAb conjugated to auristatin F also exhibited efficient antitumor activity in vivo, validating for the first time the use of an anti-Tn antibody as an effective ADC.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25206960

RESUMEN

The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA) antigen to EVs: (a) by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin), which is exposed on the surface of secreted membrane vesicles; and (b) by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs). We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8(+) T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4(+) T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases.

9.
Aging Cell ; 10(3): 542-6, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21418508

RESUMEN

Adult stem cells are critical for maintaining cellular homeostasis throughout life, yet the effects of age on their regenerative capacity are poorly understood. All lymphoid and myeloid blood cell lineages are continuously generated from hematopoietic stem cells present in human bone marrow. With age, significant changes in the function and composition of mature blood cells are observed. In this study, we report that age-related changes also occur in the human hematopoietic stem cell compartment. We find that the proportion of multipotent CD34(+) CD38(-) cells increases in the bone marrow of elderly (>70 years) individuals. CD34(+) CD38(+) CD90(-) CD45RA(+/-) CD10(-) and CD34(+) CD33(+) myeloid progenitors persist at the same level in the bone marrow, while the frequency of early CD34(+) CD38(+) CD90(-) CD45RA(+) CD10(+) and committed CD34(+) CD19(+) B-lymphoid progenitors decreases with age. In contrast to mice models of aging, transplantation experiments with immunodeficient NOD/SCID/IL-2Rγ null (NSG) mice showed that the frequency of NSG repopulating cells does not change significantly with age, and there is a decrease in myeloid lineage reconstitution. An age-related decrease in the capacity of CD34(+) cells to generate myeloid cells was also seen in colony-forming assays in vitro. Thus, with increasing age, human hematopoietic stem/progenitor cells undergo quantitative changes as well as functional modifications.


Asunto(s)
Envejecimiento , Antígenos CD/análisis , Células de la Médula Ósea/citología , Médula Ósea/fisiología , Células Madre Hematopoyéticas/citología , Células Mieloides/citología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos CD/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células de la Médula Ósea/inmunología , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Ensayo de Unidades Formadoras de Colonias , Femenino , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/inmunología , Humanos , Masculino , Ratones , Ratones SCID , Células Mieloides/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA