RESUMEN
Wound infection, especially the development of bacterial biofilms, delays wound healing and is a major public health concern. Bacteria in biofilms are more tolerant to antimicrobial agents, and new treatments to eradicate mature biofilms are needed. Combining antimicrobial molecules with different mechanisms of action is an attractive strategy to tackle the heterogeneous nature of microbial communities in biofilms. This study focused on three molecules of natural origin: gallic acid (G), carvacrol (K) and curcumin (Q). Their abilities, individually or in combination, to eradicate biofilms were quantified on mono- and dual-species mature biofilms of Pseudomonas aeruginosa and Staphylococcus aureus, the strains most commonly found in infected wounds. G presented biofilm eradicating activity on P. aeruginosa, whereas K had biofilm eradicating activity on S. aureus and P. aeruginosa. Q had no potent biofilm eradicating activity. The combination of G and K increased the effects previously observed on P. aeruginosa biofilm and led to complete eradication of S. aureus biofilm. This combination was also efficient in eradicating a dual-species biofilm of S. aureus and P. aeruginosa. This work demonstrates that K and G used in combination have a strong and synergistic eradicating activity on both mono- and dual-species mature biofilms of S. aureus and P. aeruginosa and may therefore represent an efficient alternative for the treatment of biofilms in wounds.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Antibacterianos/farmacología , Biopelículas , Cimenos , Ácido Gálico/farmacología , Humanos , Pseudomonas aeruginosa , Staphylococcus aureusRESUMEN
Natural Killer (NK) cells participate in the defense against infection by killing pathogens and infected cells and secreting immuno-modulatory cytokines. Defects in NK cell activity have been reported in obese, diabetic, and elderly patients that are at high risk of developing infected chronic wounds. Calcium alginate dressings are indicated for the debridement during the inflammatory phase of healing. Since calcium ions are major activators of NK cells, we hypothesized that these dressings could enhance NK functions, as investigated in vitro herein. Primary human blood NK cells were freshly-isolated from healthy volunteers and exposed to conditioned media (CM) from two alginate dressings, Algosteril® (ALG, pure Ca2+ alginate) and Biatain® Alginate (BIA, Ca2+ alginate with CMC), in comparison with an exogenous 3mM calcium solution. Our results demonstrated that exogenous calcium and ALG-CM, but not BIA-CM, induced NK cell activation and enhanced their capacity to kill their targets as a result of increased degranulation. NK cell stimulation by ALG depended on the influx of extracellular Ca2+ via the SOCE Ca2+ permeable plasma membrane channels. ALG-CM also activated NK cell cytokine production of IFN-γ and TNF-α through a partly Ca2+-independent mechanism. This work highlights the non-equivalence between alginate dressings for NK cell stimulation and shows that the pure calcium alginate dressing Algosteril® enhances NK cell cytotoxic and immuno-modulatory activities. Altogether, these results underline a specific property of this medical device in innate defense that is key for the cutaneous wound healing process.
Asunto(s)
Alginatos , Calcio , Humanos , Anciano , Alginatos/farmacología , Cicatrización de Heridas , Vendajes , Células Asesinas NaturalesRESUMEN
Variants in the UNC45A cochaperone have been recently associated with a syndrome combining diarrhea, cholestasis, deafness, and bone fragility. Yet the mechanism underlying intestinal failure in UNC45A deficiency remains unclear. Here, biallelic variants in UNC45A were identified by next-generation sequencing in 6 patients with congenital diarrhea. Corroborating in silico prediction, variants either abolished UNC45A expression or altered protein conformation. Myosin VB was identified by mass spectrometry as client of the UNC45A chaperone and was found misfolded in UNC45AKO Caco-2 cells. In keeping with impaired myosin VB function, UNC45AKO Caco-2 cells showed abnormal epithelial morphogenesis that was restored by full-length UNC45A, but not by mutant alleles. Patients and UNC45AKO 3D organoids displayed altered luminal development and microvillus inclusions, while 2D cultures revealed Rab11 and apical transporter mislocalization as well as sparse and disorganized microvilli. All those features resembled the subcellular abnormalities observed in duodenal biopsies from patients with microvillus inclusion disease. Finally, microvillus inclusions and shortened microvilli were evidenced in enterocytes from unc45a-deficient zebrafish. Taken together, our results provide evidence that UNC45A plays an essential role in epithelial morphogenesis through its cochaperone function of myosin VB and that UNC45A loss causes a variant of microvillus inclusion disease.