Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 150(6): 1182-95, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980979

RESUMEN

Ubiquitin-dependent signaling during the DNA damage response (DDR) to double-strand breaks (DSBs) is initiated by two E3 ligases, RNF8 and RNF168, targeting histone H2A and H2AX. RNF8 is the first ligase recruited to the damage site, and RNF168 follows RNF8-dependent ubiquitination. This suggests that RNF8 initiates H2A/H2AX ubiquitination with K63-linked ubiquitin chains and RNF168 extends them. Here, we show that RNF8 is inactive toward nucleosomal H2A, whereas RNF168 catalyzes the monoubiquitination of the histones specifically on K13-15. Structure-based mutagenesis of RNF8 and RNF168 RING domains shows that a charged residue determines whether nucleosomal proteins are recognized. We find that K63 ubiquitin chains are conjugated to RNF168-dependent H2A/H2AX monoubiquitination at K13-15 and not on K118-119. Using a mutant of RNF168 unable to target histones but still catalyzing ubiquitin chains at DSBs, we show that ubiquitin chains per se are insufficient for signaling, but RNF168 target ubiquitination is required for DDR.


Asunto(s)
Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Histonas/química , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/química , Nucleosomas/metabolismo , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Ubiquitina-Proteína Ligasas/química , Difracción de Rayos X
2.
EMBO Rep ; 22(4): e51749, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33619839

RESUMEN

During DNA replication, the deubiquitinating enzyme USP1 limits the recruitment of translesion polymerases by removing ubiquitin marks from PCNA to allow specific regulation of the translesion synthesis (TLS) pathway. USP1 activity depends on an allosteric activator, UAF1, and this is tightly controlled. In comparison to paralogs USP12 and USP46, USP1 contains three defined inserts and lacks the second WDR20-mediated activation step. Here we show how inserts L1 and L3 together limit intrinsic USP1 activity and how this is relieved by UAF1. Intriguingly, insert L1 also conveys substrate-dependent increase in USP1 activity through DNA and PCNA interactions, in a process that is independent of UAF1-mediated activation. This study establishes insert L1 as an important regulatory hub within USP1 necessary for both substrate-mediated activity enhancement and allosteric activation upon UAF1 binding.


Asunto(s)
Proteínas Nucleares , Proteasas Ubiquitina-Específicas , Regulación Alostérica , Reparación del ADN , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
3.
Mol Cell ; 57(5): 887-900, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25702870

RESUMEN

Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking. In this process, large conformational changes create small but highly specific interfaces that mediate activity modulation of UCH-L5 by altering the affinity for substrates. Our results establish how related domains can exploit enzyme conformational plasticity to allosterically regulate DUB activity. These allosteric sites may present novel insights for pharmaceutical intervention in DUB activity.


Asunto(s)
Proteínas de Unión al ADN/química , Glicoproteínas de Membrana/química , Estructura Terciaria de Proteína , Ubiquitina Tiolesterasa/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
4.
J Struct Biol ; 195(1): 11-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27183903

RESUMEN

Ubiquitin conjugation is an important signal in cellular pathways, changing the fate of a target protein, by degradation, relocalisation or complex formation. These signals are balanced by deubiquitinating enzymes (DUBs), which antagonize ubiquitination of specific protein substrates. Because ubiquitination pathways are critically important, DUB activity is often carefully controlled. USP7 is a highly abundant DUB with numerous targets that plays complex roles in diverse pathways, including DNA regulation, p53 stress response and endosomal protein recycling. Full-length USP7 switches between an inactive and an active state, tuned by the positioning of 5 Ubl folds in the C-terminal HUBL domain. The active state requires interaction between the last two Ubls (USP7(45)) and the catalytic domain (USP7(CD)), and this can be promoted by allosteric interaction from the first 3 Ubl domains of USP7 (USP7(123)) interacting with GMPS. Here we study the transition between USP7 states. We provide a crystal structure of USP7(CD123) and show that CD and Ubl123 are connected via an extended charged alpha helix. Mutational analysis is used to determine whether the charge and rigidity of this 'connector helix' are important for full USP7 activity.


Asunto(s)
Dominio Catalítico , Peptidasa Específica de Ubiquitina 7/química , Sitio Alostérico , Cristalografía por Rayos X , Enzimas Desubicuitinizantes/química , Humanos , Estructura Molecular , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Estructura Secundaria de Proteína
5.
J Struct Biol ; 196(3): 437-447, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27650958

RESUMEN

Regulation of deubiquitinating enzyme (DUB) activity is an essential step for proper function of cellular ubiquitin signals. UAF1 is a WD40 repeat protein, which binds and activates three important DUBs, USP1, USP12 and USP46. Here, we report the crystal structure of the USP12-Ub/UAF1 complex at a resolution of 2.8Å and of UAF1 at 2.3Å. In the complex we find two potential sites for UAF1 binding, analogous to what was seen in a USP46/UAF1 complex. In line with these observed dual binding states, we show here that USP12/UAF1 complex has 1:2 stoichiometry in solution, with a two-step binding at 4nM and 325nM respectively. Mutagenesis studies show that the fingers sub-domain of USP12 interacts with UAF1 to form the high affinity interface. Our activation studies confirm that the high affinity binding is important for activation while the second UAF1 binding does not affect activation. Nevertheless, we show that this two step binding is conserved in the well-studied USP12 paralog, USP1. Our results highlight the interfaces essential for regulation of USP12 activity and show a conserved second binding of UAF1 which could be important for regulatory functions independent of USP12 activity.


Asunto(s)
Proteínas Nucleares/química , Ubiquitina Tiolesterasa/química , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Enzimas Desubicuitinizantes/química , Humanos , Proteínas Nucleares/ultraestructura , Unión Proteica , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Ubiquitina/química , Ubiquitina Tiolesterasa/ultraestructura , Rayos X
6.
EMBO J ; 31(19): 3833-44, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863777

RESUMEN

Activation of the NF-κB pathway requires the formation of Met1-linked 'linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed 'Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains.


Asunto(s)
Proteínas Portadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas Portadoras/química , Células HEK293 , Humanos , FN-kappa B/metabolismo , Estructura Terciaria de Proteína , Ubiquitinación/fisiología
7.
Mol Cell ; 31(3): 371-82, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691969

RESUMEN

Posttranslational modification with small ubiquitin-related modifier, SUMO, is a widespread mechanism for rapid and reversible changes in protein function. Considering the large number of known targets, the number of enzymes involved in modification seems surprisingly low: a single E1, a single E2, and a few distinct E3 ligases. Here we show that autosumoylation of the mammalian E2-conjugating enzyme Ubc9 at Lys14 regulates target discrimination. While not altering its activity toward HDAC4, E2-25K, PML, or TDG, sumoylation of Ubc9 impairs its activity on RanGAP1 and strongly activates sumoylation of the transcriptional regulator Sp100. Enhancement depends on a SUMO-interacting motif (SIM) in Sp100 that creates an additional interface with the SUMO conjugated to the E2, a mechanism distinct from Ubc9 approximately SUMO thioester recruitment. The crystal structure of sumoylated Ubc9 demonstrates how the newly created binding interface can provide a gain in affinity otherwise provided by E3 ligases.


Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autoantígenos/metabolismo , Cristalografía por Rayos X , Ésteres/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/química
8.
J Biol Chem ; 288(44): 31728-37, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24030825

RESUMEN

The ubiquitination of NEMO with linear ubiquitin chains by the E3-ligase LUBAC is important for the activation of the canonical NF-κB pathway. NEMO ubiquitination requires a dual target specificity of LUBAC, priming on a lysine on NEMO and chain elongation on the N terminus of the priming ubiquitin. Here we explore the minimal requirements for these specificities. Effective linear chain formation requires a precise positioning of the ubiquitin N-terminal amine in a negatively charged environment on the top of ubiquitin. Whereas the RBR-LDD region on HOIP is sufficient for targeting the ubiquitin N terminus, the priming lysine modification on NEMO requires catalysis by the RBR domain of HOIL-1L as well as the catalytic machinery of the RBR-LDD domains of HOIP. Consequently, target specificity toward NEMO is determined by multiple LUBAC components, whereas linear ubiquitin chain elongation is realized by a specific interplay between HOIP and ubiquitin.


Asunto(s)
Quinasa I-kappa B/química , Complejos Multienzimáticos/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Ubiquitinación/fisiología , Catálisis , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
EMBO Rep ; 12(4): 365-72, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21415856

RESUMEN

USP4 is a member of the ubiquitin-specific protease (USP) family of deubiquitinating enzymes that has a role in spliceosome regulation. Here, we show that the crystal structure of the minimal catalytic domain of USP4 has the conserved USP-like fold with its typical ubiquitin-binding site. A ubiquitin-like (Ubl) domain inserted into the catalytic domain has autoregulatory function. This Ubl domain can bind to the catalytic domain and compete with the ubiquitin substrate, partially inhibiting USP4 activity against different substrates. Interestingly, other USPs, such as USP39, could relieve this inhibition.


Asunto(s)
Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Ubiquitina , Proteasas Ubiquitina-Específicas
10.
J Struct Biol ; 175(2): 113-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21453775

RESUMEN

High-throughput methods to produce a large number of soluble recombinant protein variants are particularly important in the process of determining the three-dimensional structure of proteins and their complexes. Here, we describe a collection of protein expression vectors for ligation-independent cloning, which allow co-expression strategies by implementing different affinity tags and antibiotic resistances. Since the same PCR product can be inserted in all but one of the vectors, this allows efficiency in versatility while screening for optimal expression strategies. We first demonstrate the use of these vectors for protein expression in Escherichia coli, on a set of proteins belonging to the ubiquitin specific protease (USP) Family. We have selected 35 USPs, created 145 different expression constructs into the pETNKI-His-3C-LIC-kan vector, and obtained 38 soluble recombinant proteins for 21 different USPs. Finally, we exemplify the use of our vectors for bacterial co-expression and for expression in insect cells, with USP4 and USP7 respectively. We conclude that our ligation-independent cloning strategy allows for high-throughput screening for the expression of soluble proteins in a variety of vectors in E. coli and in insect cells. In addition, the same vectors can be used for co-expression studies, at least for simple binary complexes. Application in the family of ubiquitin specific proteases led to a number of soluble USPs that are used for functional and crystallization studies.


Asunto(s)
Clonación Molecular/métodos , Endopeptidasas/genética , Vectores Genéticos , Proteínas Recombinantes/genética , Animales , Automatización de Laboratorios , Baculoviridae , Secuencia de Bases , Línea Celular , Endopeptidasas/metabolismo , Escherichia coli/genética , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Proteasas Ubiquitina-Específicas
11.
Nat Struct Mol Biol ; 12(3): 264-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15723079

RESUMEN

Post-translational modification with small ubiquitin-related modifier (SUMO) alters the function of many proteins, but the molecular mechanisms and consequences of this modification are still poorly defined. During a screen for novel SUMO1 targets, we identified the ubiquitin-conjugating enzyme E2-25K (Hip2). SUMO attachment severely impairs E2-25K ubiquitin thioester and unanchored ubiquitin chain formation in vitro. Crystal structures of E2-25K(1-155) and of the E2-25K(1-155)-SUMO conjugate (E2-25K(*)SUMO) indicate that SUMO attachment interferes with E1 interaction through its location on the N-terminal helix. The SUMO acceptor site in E2-25K, Lys14, does not conform to the consensus site found in most SUMO targets (PsiKXE), and functions only in the context of an alpha-helix. In contrast, adjacent SUMO consensus sites are modified only when in unstructured peptides. The demonstration that secondary structure elements are part of SUMO attachment signals could contribute to a better prediction of SUMO targets.


Asunto(s)
Procesamiento Proteico-Postraduccional/fisiología , Proteína SUMO-1/fisiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Secuencia de Consenso , Cristalización , Células HeLa , Humanos , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteína SUMO-1/metabolismo
12.
Nat Commun ; 10(1): 231, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651545

RESUMEN

USP7 is a highly abundant deubiquitinating enzyme (DUB), involved in cellular processes including DNA damage response and apoptosis. USP7 has an unusual catalytic mechanism, where the low intrinsic activity of the catalytic domain (CD) increases when the C-terminal Ubl domains (Ubl45) fold onto the CD, allowing binding of the activating C-terminal tail near the catalytic site. Here we delineate how the target protein promotes the activation of USP7. Using NMR analysis and biochemistry we describe the order of activation steps, showing that ubiquitin binding is an instrumental step in USP7 activation. Using chemically synthesised p53-peptides we also demonstrate how the correct ubiquitinated substrate increases catalytic activity. We then used transient reaction kinetic modelling to define how the USP7 multistep mechanism is driven by target recognition. Our data show how this pleiotropic DUB can gain specificity for its cellular targets.


Asunto(s)
Procesamiento Proteico-Postraduccional , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitina/metabolismo , Isótopos de Carbono/química , Dominio Catalítico/genética , Pruebas de Enzimas/métodos , Cinética , Modelos Químicos , Mutagénesis Sitio-Dirigida , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Proteína p53 Supresora de Tumor/química , Ubiquitina/química , Peptidasa Específica de Ubiquitina 7/química , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/aislamiento & purificación
13.
Neuron ; 41(6): 907-14, 2004 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15046723

RESUMEN

Nicotinic acetylcholine receptors are prototypes for the pharmaceutically important family of pentameric ligand-gated ion channels. Here we present atomic resolution structures of nicotine and carbamylcholine binding to AChBP, a water-soluble homolog of the ligand binding domain of nicotinic receptors and their family members, GABAA, GABAC, 5HT3 serotonin, and glycine receptors. Ligand binding is driven by enthalpy and is accompanied by conformational changes in the ligand binding site. Residues in the binding site contract around the ligand, with the largest movement in the C loop. As expected, the binding is characterized by substantial aromatic and hydrophobic contributions, but additionally there are close contacts between protein oxygens and positively charged groups in the ligands. The higher affinity of nicotine is due to a main chain hydrogen bond with the B loop and a closer packing of the aromatic groups. These structures will be useful tools for the development of new drugs involving nicotinic acetylcholine receptor-associated diseases.


Asunto(s)
Acetilcolina/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Activación del Canal Iónico/fisiología , Agonistas Nicotínicos/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Carbacol/metabolismo , Proteínas Portadoras/efectos de los fármacos , Cristalografía por Rayos X , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Lymnaea , Modelos Moleculares , Conformación Molecular , Sistema Nervioso/metabolismo , Nicotina/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
14.
J Biochem ; 144(1): 39-49, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18344540

RESUMEN

The modification of proteins by SUMO (small ubiquitin-like modifier) regulates various cellular processes. Sumoylation often occurs on a specific lysine residue within the consensus motif psiKxE/D. However, little is known about the specificity and selectivity of SUMO target sites. We describe here a SUMO assay with peptide array on solid support for the simultaneous characterization of hundreds of different SUMO target sites. This approach was used to characterize known SUMO substrates. The position of the motif within the peptide and the amino acids flanking the acceptor site affected the efficiency of SUMO modification. Interestingly, a sequence of only four amino acids, corresponding to the SUMO consensus motif without flanking amino acids, was a bona fide target site. Analysis of a peptide library for all variants of the psiKxE/D consensus motif revealed that the first and third positions in the tetrapeptide preferably contain aromatic amino acid residues. Furthermore, by adding the SUMO E3 ligase PIAS1 to the reaction mixture, we show specific enhancement of the modification of a PIAS1-dependent SUMO substrate in this system. Overall, our results demonstrate that the sumoylation assay with peptide array on solid support can be used for the high-throughput characterization of SUMO target sites, and provide new insights into the composition, selectivity and specificity of SUMO target sites.


Asunto(s)
Péptidos/química , Análisis por Matrices de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Consenso , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/síntesis química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/análisis , Especificidad por Sustrato
15.
Nat Commun ; 7: 10292, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26739236

RESUMEN

The deubiquitinating enzyme BAP1 is an important tumor suppressor that has drawn attention in the clinic since its loss leads to a variety of cancers. BAP1 is activated by ASXL1 to deubiquitinate mono-ubiquitinated H2A at K119 in Polycomb gene repression, but the mechanism of this reaction remains poorly defined. Here we show that the BAP1 C-terminal extension is important for H2A deubiquitination by auto-recruiting BAP1 to nucleosomes in a process that does not require the nucleosome acidic patch. This initial encounter-like complex is unproductive and needs to be activated by the DEUBAD domains of ASXL1, ASXL2 or ASXL3 to increase BAP1's affinity for ubiquitin on H2A, to drive the deubiquitination reaction. The reaction is specific for Polycomb modifications of H2A as the complex cannot deubiquitinate the DNA damage-dependent ubiquitination at H2A K13/15. Our results contribute to the molecular understanding of this important tumor suppressor.


Asunto(s)
Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Secuencia de Aminoácidos , Línea Celular , Clonación Molecular , Escherichia coli , Regulación de la Expresión Génica/fisiología , Histonas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
16.
Novartis Found Symp ; 245: 22-9; discussion 29-32, 165-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12027010

RESUMEN

Acetylcholine binding protein (AChBP) is a novel protein with high similarity to the extracellular domain of the nicotinic acetylcholine receptor. It is secreted from glia cells in the freshwater snail, Lymnaea stagnalis, where it modulates neuronal transmission. AChBP forms homopentamers with pharmacology that resembles the alpha7 nicotinic receptors. In the crystal structure of AChBP at 2.7 A, each protomer has a modified immunoglobulin fold. Almost all residues shown to be involved in ligand binding in the nicotinic receptor are found in a pocket at the subunit interface. This pocket is lined with aromatic residues, and filled with a HEPES buffer molecule. The AChBP crystal structure explains many of the biochemical studies on the nicotinic acetylcholine receptors. Surprisingly the interface between protomers is relatively weakly conserved between family members in the superfamily of pentameric ligand-gated ion channels. The lack of conservation has implications for the mechanism of gating of the ion channels.


Asunto(s)
Proteínas Portadoras/química , Receptores Nicotínicos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína
17.
Nat Commun ; 5: 3291, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24518117

RESUMEN

During DNA damage response, the RING E3 ligase RNF168 ubiquitinates nucleosomal H2A at K13-15. Here we show that the ubiquitination reaction is regulated by its substrate. We define a region on the RING domain important for target recognition and identify the H2A/H2B dimer as the minimal substrate to confer lysine specificity to the RNF168 reaction. Importantly, we find an active role for the substrate in the reaction. H2A/H2B dimers and nucleosomes enhance the E3-mediated discharge of ubiquitin from the E2 and redirect the reaction towards the relevant target, in a process that depends on an intact acidic patch. This active contribution of a region distal from the target lysine provides regulation of the specific K13-15 ubiquitination reaction during the complex signalling process at DNA damage sites.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293 , Humanos , Ubiquitinación
18.
Chem Biol ; 18(12): 1550-61, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22195557

RESUMEN

Ubiquitin-specific proteases (USPs) are papain-like isopeptidases with variable inter- and intramolecular regulatory domains. To understand the effect of these domains on USP activity, we have analyzed the enzyme kinetics of 12 USPs in the presence and absence of modulators using synthetic reagents. This revealed variations of several orders of magnitude in both the catalytic turnover (k(cat)) and ubiquitin (Ub) binding (K(M)) between USPs. Further activity modulation by intramolecular domains affects both the k(cat) and K(M), whereas the intermolecular activators UAF1 and GMPS mainly increase the k(cat). Also, we provide the first comprehensive analysis comparing Ub chain preference. USPs can hydrolyze all linkages and show modest Ub-chain preferences, although some show a lack of activity toward linear di-Ub. This comprehensive kinetic analysis highlights the variability within the USP family.


Asunto(s)
Endopeptidasas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Endopeptidasas/química , Endopeptidasas/genética , Guanosina Monofosfato/metabolismo , Humanos , Cinética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tionucleótidos/metabolismo , Ubiquitina/química , Proteasas Ubiquitina-Específicas
19.
EMBO J ; 26(11): 2797-807, 2007 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-17491593

RESUMEN

The ubiquitin-related modifier SUMO regulates a wide range of cellular processes by post-translational modification with one, or a chain of SUMO molecules. Sumoylation is achieved by the sequential action of several enzymes in which the E2, Ubc9, transfers SUMO from the E1 to the target mostly with the help of an E3 enzyme. In this process, Ubc9 not only forms a thioester bond with SUMO, but also interacts with SUMO noncovalently. Here, we show that this noncovalent interaction promotes the formation of short SUMO chains on targets such as Sp100 and HDAC4. We present a crystal structure of the noncovalent Ubc9-SUMO1 complex, showing that SUMO is located far from the E2 active site and resembles the noncovalent interaction site for ubiquitin on UbcH5c and Mms2. Structural comparison suggests a model for poly-sumoylation involving a mechanism analogous to Mms2-Ubc13-mediated ubiquitin chain formation.


Asunto(s)
Modelos Moleculares , Proteína SUMO-1/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Animales , Calorimetría , Cromatografía en Gel , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Proteína SUMO-1/genética , Enzimas Ubiquitina-Conjugadoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA