Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(7): 075301, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22401219

RESUMEN

We consider coupled spin and heat transport in a two-component atomic Bose gas in the noncondensed state. We find that the transport coefficients show a temperature dependence reflecting the bosonic enhancement of scattering and discuss experimental signatures of the spin-heat coupling in spin accumulation, spin separation, and total dissipation. Close to the critical temperature for Bose-Einstein condensation, we find that the spin-heat coupling is strongly reduced, which is also reflected in the spin caloritronics figure of merit that determines the thermodynamic efficiency of spin-heat conversion.

2.
Phys Rev Lett ; 105(15): 155301, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-21230916

RESUMEN

We show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin-drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode due to spin drag as a function of temperature. We find that due to Bose stimulation there is a strong enhancement of the damping for temperatures close to the critical temperature for Bose-Einstein condensation.

3.
Phys Rev Lett ; 105(5): 056601, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20867942

RESUMEN

Using transmission electron microscopy, we investigate the thermally activated motion of domain walls (DWs) between two positions in Permalloy (Ni80Fe20) nanowires at room temperature. We show that this purely thermal motion is well described by an Arrhenius law, allowing for a description of the DW as a quasiparticle in a one-dimensional potential landscape. By injecting small currents, the potential is modified, allowing for the determination of the nonadiabatic spin torque: ßt=0.010±0.004 for a transverse DW and ßv=0.073±0.026 for a vortex DW. The larger value is attributed to the higher magnetization gradients present.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA