Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Metab Eng ; 82: 49-59, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309619

RESUMEN

Enzyme-constrained genome-scale models (ecGEMs) have potential to predict phenotypes in a variety of conditions, such as growth rates or carbon sources. This study investigated if ecGEMs can guide metabolic engineering efforts to swap anaerobic redox-neutral ATP-providing pathways in yeast from alcoholic fermentation to equimolar co-production of 2,3-butanediol and glycerol. With proven pathways and low product toxicity, the ecGEM solution space aligned well with observed phenotypes. Since this catabolic pathway provides only one-third of the ATP of alcoholic fermentation (2/3 versus 2 ATP per glucose), the ecGEM predicted a growth decrease from 0.36 h-1 in the reference to 0.175 h-1 in the engineered strain. However, this <3-fold decrease would require the specific glucose consumption rate to increase. Surprisingly, after the pathway swap the engineered strain immediately grew at 0.15 h-1 with a glucose consumption rate of 29 mmol (g CDW)-1 h-1, which was indeed higher than reference (23 mmol (g CDW)-1 h-1) and one of the highest reported for S. cerevisiae. The accompanying 2,3-butanediol- (15.8 mmol (g CDW)-1 h-1) and glycerol (19.6 mmol (g CDW)-1 h-1) production rates were close to predicted values. Proteomics confirmed that this increased consumption rate was facilitated by enzyme reallocation from especially ribosomes (from 25.5 to 18.5 %) towards glycolysis (from 28.7 to 43.5 %). Subsequently, 200 generations of sequential transfer did not improve growth of the engineered strain, showing the use of ecGEMs in predicting opportunity space for laboratory evolution. The observations in this study illustrate both the current potential, as well as future improvements, of ecGEMs as a tool for both metabolic engineering and laboratory evolution.


Asunto(s)
Butileno Glicoles , Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Glicerol/metabolismo , Anaerobiosis , Glucosa/genética , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Fermentación
2.
Metab Eng ; 77: 306-322, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37085141

RESUMEN

Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PPi) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PPi sources are key to engineering its metabolism. Previous efforts to identify the primary pyrophosphate have been unsuccessful. Here, we explore pyrophosphate metabolism through reconstructing, updating, and analyzing a new genome-scale stoichiometric model for C. thermocellum, iCTH669. Hundreds of changes to the former GEM, iCBI655, including correcting cofactor usages, addressing charge and elemental balance, standardizing biomass composition, and incorporating the latest experimental evidence led to a MEMOTE score improvement to 94%. We found agreement of iCTH669 model predictions across all available fermentation and biomass yield datasets. The feasibility of hundreds of PPi synthesis routes, newly identified and previously proposed, were assessed through the lens of the iCTH669 model including biomass synthesis, tRNA synthesis, newly identified sources, and previously proposed PPi-generating cycles. In all cases, the metabolic cost of PPi synthesis is at best equivalent to investment of one ATP suggesting no direct energetic advantage for the cofactor substitution in C. thermocellum. Even though no unique source of PPi could be gleaned by the model, by combining with gene expression data two most likely scenarios emerge. First, previously investigated PPi sources likely account for most PPi production in wild-type strains. Second, alternate metabolic routes as encoded by iCTH669 can collectively maintain PPi levels even when previously investigated synthesis cycles are disrupted. Model iCTH669 is available at github.com/maranasgroup/iCTH669.


Asunto(s)
Clostridium thermocellum , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Glucólisis/genética , Fermentación , Adenosina Trifosfato/metabolismo
3.
Appl Environ Microbiol ; 89(1): e0175322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36625594

RESUMEN

Clostridium thermocellum is a cellulolytic thermophile that is considered for the consolidated bioprocessing of lignocellulose to ethanol. Improvements in ethanol yield are required for industrial implementation, but the incompletely understood causes of amino acid secretion impede progress. In this study, amino acid secretion was investigated via gene deletions in ammonium-regulated, nicotinamide adenine dinucleotide phosphate (NADPH)-supplying and NADPH-consuming pathways as well as via physiological characterization in cellobiose-limited or ammonium-limited chemostats. First, the contribution of the NADPH-supplying malate shunt was studied with strains using either the NADPH-yielding malate shunt (Δppdk) or a redox-independent conversion of PEP to pyruvate (Δppdk ΔmalE::Peno-pyk). In the latter, branched-chain amino acids, especially valine, were significantly reduced, whereas the ethanol yield increased from 46 to 60%, suggesting that the secretion of these amino acids balances the NADPH surplus from the malate shunt. The unchanged amino acid secretion in Δppdk falsified a previous hypothesis on an ammonium-regulated PEP-to-pyruvate flux redistribution. The possible involvement of another NADPH-supplier, namely, NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (nfnAB), was also excluded. Finally, the deletion of glutamate synthase (gogat) in ammonium assimilation resulted in the upregulation of NADPH-linked glutamate dehydrogenase activity and decreased amino acid yields. Since gogat in C. thermocellum is putatively annotated as ferredoxin-linked, a claim which is supported by the product redistribution observed in this study, this deletion likely replaced ferredoxin with NADPH in ammonium assimilation. Overall, these findings indicate that a need to reoxidize NADPH is driving the observed amino acid secretion, likely at the expense of the NADH needed for ethanol formation. This suggests that metabolic engineering strategies that simplify the redox metabolism and ammonium assimilation can contribute to increased ethanol yields. IMPORTANCE Improving the ethanol yield of C. thermocellum is important for the industrial implementation of this microorganism in consolidated bioprocessing. A central role of NADPH in driving amino acid byproduct formation was demonstrated by eliminating the NADPH-supplying malate shunt and separately by changing the cofactor specificity in ammonium assimilation. With amino acid secretion diverting carbon and electrons away from ethanol, these insights are important for further metabolic engineering to reach industrial requirements on ethanol yield. This study also provides chemostat data that are relevant for training genome-scale metabolic models and for improving the validity of their predictions, especially considering the reduced degree-of-freedom in the redox metabolism of the strains generated here. In addition, this study advances the fundamental understanding on the mechanisms underlying amino acid secretion in cellulolytic Clostridia as well as on the regulation and cofactor specificity in ammonium assimilation. Together, these efforts aid in the development of C. thermocellum for the sustainable consolidated bioprocessing of lignocellulose to ethanol with minimal pretreatment.


Asunto(s)
Aminoácidos , Compuestos de Amonio , Clostridium thermocellum , NADP , Aminoácidos/biosíntesis , Aminoácidos/metabolismo , Compuestos de Amonio/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Etanol/metabolismo , Ferredoxinas/metabolismo , Malatos/metabolismo , NAD/metabolismo , NADP/metabolismo , Piruvatos/metabolismo , Oxidación-Reducción
4.
Arch Biochem Biophys ; 743: 109676, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37380119

RESUMEN

The phosphofructokinase (Pfk) reaction represents one of the key regulatory points in glycolysis. While most organisms encode for Pfks that use ATP as phosphoryl donor, some organisms also encode for PPi-dependent Pfks. Despite this central role, the biochemical characteristics as well as the physiological role of both Pfks is often not known. Clostridium thermocellum is an example of a microorganism that encodes for both Pfks, however, only PPi-Pfk activity has been detected in cell-free extracts and little is known about the regulation and function of both enzymes. In this study, the ATP- and PPi-Pfk of C. thermocellum were purified and biochemically characterized. No allosteric regulators were found for PPi-Pfk amongst common effectors. With fructose-6-P, PPi, fructose-1,6-bisP, and Pi PPi-Pfk showed high specificity (KM < 0.62 mM) and maximum activity (Vmax > 156 U mg-1). In contrast, ATP-Pfk showed much lower affinity (K0.5 of 9.26 mM) and maximum activity (14.5 U mg-1) with fructose-6-P. In addition to ATP, also GTP, UTP and ITP could be used as phosphoryl donors. The catalytic efficiency with GTP was 7-fold higher than with ATP, suggesting that GTP is the preferred substrate. The enzyme was activated by NH4+, and pronounced inhibition was observed with GDP, FBP, PEP, and especially with PPi (Ki of 0.007 mM). Characterization of purified ATP-Pfks originating from eleven different bacteria, encoding for only ATP-Pfk or for both ATP- and PPi-Pfk, identified that PPi inhibition of ATP-Pfks could be a common phenomenon for organisms with a PPi-dependent glycolysis.


Asunto(s)
Clostridium thermocellum , Fosfofructoquinasas , Fosfofructoquinasas/metabolismo , Clostridium thermocellum/metabolismo , Difosfatos , Secuencia de Aminoácidos , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Bacterias/metabolismo , Adenosina Trifosfato , Guanosina Trifosfato , Cinética
5.
Appl Microbiol Biotechnol ; 107(20): 6219-6236, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572123

RESUMEN

Acyl-CoA-thioesterases, which hydrolyze acyl-CoA-esters and thereby release the respective acid, have essential functions in cellular metabolism and have also been used to produce valuable compounds in biotechnological processes. Thioesterase YciA originating from Haemophilus influenzae has been previously used to produce specific dicarboxylic acids from CoA-bound intermediates of the ethylmalonyl CoA pathway (EMCP) in Methylorubrum extorquens. In order to identify variants of the YciA enzyme with the capability to hydrolyze so far inaccessible CoA-esters of the EMCP or with improved productivity, we engineered the substrate-binding region of the enzyme. Screening a small semi-rational mutant library directly in M. extorquens yielded the F35L variant which showed a drastic product level increase for mesaconic acid (6.4-fold) and 2-methylsuccinic acid (4.4-fold) compared to the unaltered YciA enzyme. Unexpectedly, in vitro enzyme assays using respective M. extorquens cell extracts or recombinantly produced thioesterases could not deliver congruent data, as the F35L variant showed strongly reduced activity in these experiments. However, applied in an Escherichia coli production strain, the protein variant again outperformed the wild-type enzyme by allowing threefold increased 3-hydroxybutyric acid product titers. Saturation mutagenesis of the codon for position 35 led to the identification of another highly efficient YciA variant and enabled structure-function interpretations. Our work describes an important module for dicarboxylic acid production with M. extorquens and can guide future thioesterase improvement approaches. KEY POINTS: • Substitutions at position F35 of YciAHI changed the productivity of YciA-based release of carboxylic acid products in M. extorquens AM1 and E. coli. • YciAHI F35N and F35L are improved variants for dicarboxylic production of 2-methylsuccinic acid and mesaconic acid with M. extorquens AM1. • In vitro enzyme assays did not reveal superior properties of the optimized protein variants.

6.
Appl Environ Microbiol ; 88(4): e0185721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936842

RESUMEN

The atypical glycolysis of Clostridium thermocellum is characterized by the use of pyrophosphate (PPi) as a phosphoryl donor for phosphofructokinase (Pfk) and pyruvate phosphate dikinase (Ppdk) reactions. Previously, biosynthetic PPi was calculated to be stoichiometrically insufficient to drive glycolysis. This study investigates the role of a H+-pumping membrane-bound pyrophosphatase, glycogen cycling, a predicted Ppdk-malate shunt cycle, and acetate cycling in generating PPi. Knockout studies and enzyme assays confirmed that clo1313_0823 encodes a membrane-bound pyrophosphatase. Additionally, clo1313_0717-0718 was confirmed to encode ADP-glucose synthase by knockouts, glycogen measurements in C. thermocellum, and heterologous expression in Escherichia coli. Unexpectedly, individually targeted gene deletions of the four putative PPi sources did not have a significant phenotypic effect. Although combinatorial deletion of all four putative PPi sources reduced the growth rate by 22% (0.30 ± 0.01 h-1) and the biomass yield by 38% (0.18 ± 0.00 gbiomass gsubstrate-1), this change was much smaller than what would be expected for stoichiometrically essential PPi-supplying mechanisms. Growth-arrested cells of the quadruple knockout readily fermented cellobiose, indicating that the unknown PPi-supplying mechanisms are independent of biosynthesis. An alternative hypothesis that ATP-dependent Pfk activity circumvents a need for PPi altogether was falsified by enzyme assays, heterologous expression of candidate genes, and whole-genome sequencing. As a secondary outcome, enzymatic assays confirmed functional annotation of clo1313_1832 as ATP- and GTP-dependent fructokinase. These results indicate that the four investigated PPi sources individually and combined play no significant PPi-supplying role, and the true source(s) of PPi, or alternative phosphorylating mechanisms, that drive(s) glycolysis in C. thermocellum remain(s) elusive. IMPORTANCE Increased understanding of the central metabolism of C. thermocellum is important from a fundamental as well as from a sustainability and industrial perspective. In addition to showing that H+-pumping membrane-bound PPase, glycogen cycling, a Ppdk-malate shunt cycle, and acetate cycling are not significant sources of PPi supply, this study adds functional annotation of four genes and availability of an updated PPi stoichiometry from biosynthesis to the scientific domain. Together, this aids future metabolic engineering attempts aimed to improve C. thermocellum as a cell factory for sustainable and efficient production of ethanol from lignocellulosic material through consolidated bioprocessing with minimal pretreatment. Getting closer to elucidating the elusive source of PPi, or alternative phosphorylating mechanisms, for the atypical glycolysis is itself of fundamental importance. Additionally, the findings of this study directly contribute to investigations into trade-offs between thermodynamic driving force versus energy yield of PPi- and ATP-dependent glycolysis.


Asunto(s)
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Fosfatos/metabolismo , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Ácido Pirúvico/metabolismo
7.
Microb Cell Fact ; 21(1): 273, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36567317

RESUMEN

BACKGROUND: Clostridium thermocellum is a promising candidate for consolidated bioprocessing of lignocellulosic biomass to ethanol. The low ethanol tolerance of this microorganism is one of the remaining obstacles to industrial implementation. Ethanol inhibition can be caused by end-product inhibition and/or chaotropic-induced stress resulting in increased membrane fluidization and disruption of macromolecules. The highly reversible glycolysis of C. thermocellum might be especially sensitive to end-product inhibition. The chaotropic effect of ethanol is known to increase with temperature. This study explores the relative contributions of these two aspects to investigate and possibly mitigate ethanol-induced stress in growing and non-growing C. thermocellum cultures. RESULTS: To separate chaotropic from thermodynamic effects of ethanol toxicity, a non-ethanol producing strain AVM062 (Pclo1313_2638::ldh* ∆adhE) was constructed by deleting the bifunctional acetaldehyde/alcohol dehydrogenase gene, adhE, in a lactate-overproducing strain. Exogenously added ethanol lowered the growth rate of both wild-type and the non-ethanol producing mutant. The mutant strain grew quicker than the wild-type at 50 and 55 °C for ethanol concentrations ≥ 10 g L-1 and was able to reach higher maximum OD600 at all ethanol concentrations and temperatures. For the wild-type, the maximum OD600 and relative growth rates were higher at 45 and 50 °C, compared to 55 °C, for ethanol concentrations ≥ 15 g L-1. For the mutant strain, no positive effect on growth was observed at lower temperatures. Growth-arrested cells of the wild-type demonstrated improved fermentative capacity over time in the presence of ethanol concentrations up to 40 g L-1 at 45 and 50 °C compared to 55 °C. CONCLUSION: Positive effects of temperature on ethanol tolerance were limited to wild-type C. thermocellum and are likely related to mechanisms involved in the ethanol-formation pathway and redox cofactor balancing. Lowering the cultivation temperature provides an attractive strategy to improve growth and fermentative capacity at high ethanol titres in high-cellulose loading batch cultivations. Finally, non-ethanol producing strains are useful platform strains to study the effects of chaotropicity and thermodynamics related to ethanol toxicity and allow for deeper understanding of growth and/or fermentation cessation under industrially relevant conditions.


Asunto(s)
Clostridium thermocellum , Fermentación , Temperatura , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Glucólisis , Termodinámica
8.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33608285

RESUMEN

The native ability of Clostridium thermocellum to efficiently solubilize cellulose makes it an interesting platform for sustainable biofuel production through consolidated bioprocessing. Together with other improvements, industrial implementation of C. thermocellum, as well as fundamental studies into its metabolism, would benefit from improved and reproducible consumption of hexose sugars. To investigate growth of C. thermocellum on glucose or fructose, as well as the underlying molecular mechanisms, laboratory evolution was performed in carbon-limited chemostats with increasing concentrations of glucose or fructose and decreasing cellobiose concentrations. Growth on both glucose and fructose was achieved with biomass yields of 0.09 ± 0.00 and 0.18 ± 0.00 gbiomass gsubstrate-1, respectively, compared to 0.15 ± 0.01 gbiomass gsubstrate-1 for wild type on cellobiose. Single-colony isolates had no or short lag times on the monosaccharides, while wild type showed 42 ± 4 h on glucose and >80 h on fructose. With good growth on glucose, fructose, and cellobiose, the fructose isolates were chosen for genome sequence-based reverse metabolic engineering. Deletion of a putative transcriptional regulator (Clo1313_1831), which upregulated fructokinase activity, reduced lag time on fructose to 12 h with a growth rate of 0.11 ± 0.01 h-1 and resulted in immediate growth on glucose at 0.24 ± 0.01 h-1 Additional introduction of a G-to-V mutation at position 148 in cbpA resulted in immediate growth on fructose at 0.32 ± 0.03 h-1 These insights can guide engineering of strains for fundamental studies into transport and the upper glycolysis, as well as maximizing product yields in industrial settings.IMPORTANCEC. thermocellum is an important candidate for sustainable and cost-effective production of bioethanol through consolidated bioprocessing. In addition to unsurpassed cellulose deconstruction, industrial application and fundamental studies would benefit from improvement of glucose and fructose consumption. This study demonstrated that C. thermocellum can be evolved for reproducible constitutive growth on glucose or fructose. Subsequent genome sequencing, gene editing, and physiological characterization identified two underlying mutations with a role in (regulation of) transport or metabolism of the hexose sugars. In light of these findings, such mutations have likely (and unknowingly) also occurred in previous studies with C. thermocellum using hexose-based media with possible broad regulatory consequences. By targeted modification of these genes, industrial and research strains of C. thermocellum can be engineered to (i) reduce glucose accumulation, (ii) study cellodextrin transport systems in vivo, (iii) allow experiments at >120 g liter-1 soluble substrate concentration, or (iv) reduce costs for labeling studies.


Asunto(s)
Clostridium thermocellum/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crecimiento & desarrollo , Genoma Bacteriano , Laboratorios , Ingeniería Metabólica , Mutación , Secuenciación Completa del Genoma
9.
Biophys J ; 118(2): 422-434, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31843263

RESUMEN

We present a fluorescence-based approach for determination of the permeability of small molecules across the membranes of lipid vesicles and living cells. With properly designed experiments, the method allows us to assess the membrane physical properties both in vitro and in vivo. We find that the permeability of weak acids increases in the order of benzoic > acetic > formic > lactic, both in synthetic lipid vesicles and the plasma membrane of Saccharomyces cerevisiae, but the permeability is much lower in yeast (one to two orders of magnitude). We observe a relation between the molecule permeability and the saturation of the lipid acyl chain (i.e., lipid packing) in the synthetic lipid vesicles. By analyzing wild-type yeast and a manifold knockout strain lacking all putative lactic acid transporters, we conclude that the yeast plasma membrane is impermeable to lactic acid on timescales up to ∼2.5 h.


Asunto(s)
Permeabilidad de la Membrana Celular , Liposomas/metabolismo , Saccharomyces cerevisiae/citología , Concentración de Iones de Hidrógeno , Cinética , Espectrometría de Fluorescencia
10.
FEMS Yeast Res ; 19(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252062

RESUMEN

Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.


Asunto(s)
Fermentación , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Aerobiosis , Anaerobiosis , Reactores Biológicos/microbiología , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Medios de Cultivo/química , Edición Génica , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Appl Microbiol Biotechnol ; 103(9): 3693-3704, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30834961

RESUMEN

Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.


Asunto(s)
Ácido 3-Hidroxibutírico/biosíntesis , Acilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Tioléster Hidrolasas/genética , Ácido 3-Hidroxibutírico/análisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Halomonas/enzimología , Ingeniería Metabólica , Palmitoil-CoA Hidrolasa/genética , Tioléster Hidrolasas/metabolismo
12.
Appl Microbiol Biotechnol ; 103(14): 5627-5639, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31104101

RESUMEN

Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by Escherichia coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB), and/or the isocitrate lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110, and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate-forming background. Despite low 3HB titers in low-cell-density screening, 3HB-producing BL21 produced five times less acetic acid per mole of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L-1 h-1) and the highest 3HB concentration (16.3 g L-1) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.


Asunto(s)
Ácido 3-Hidroxibutírico/biosíntesis , Técnicas de Cultivo Celular por Lotes , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Reactores Biológicos , Proteínas de Escherichia coli/genética , Eliminación de Gen , Ácido Pirúvico
13.
Yeast ; 35(12): 639-652, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30221387

RESUMEN

Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasing ATP yield in Saccharomyces cerevisiae. However, attempts to construct yeast strains in which sucrose metabolism was dependent on PvSUF1 led to slow sucrose uptake. Here, PvSUF1-dependent S. cerevisiae strains were evolved for faster growth. Of five independently evolved strains, two showed an approximately twofold higher anaerobic growth rate on sucrose than the parental strain (µ = 0.19 h-1 and µ = 0.08 h-1 , respectively). All five mutants displayed sucrose-induced proton uptake (13-50 µmol H+ (g biomass)-1  min-1 ). Their ATP yield from sucrose dissimilation, as estimated from biomass yields in anaerobic chemostat cultures, was the same as that of a congenic strain expressing the native sucrose symporter Mal11p. Four out of six observed amino acid substitutions encoded by evolved PvSUF1 alleles removed or introduced a cysteine residue and may be involved in transporter folding and/or oligomerization. Expression of one of the evolved PvSUF1 alleles (PvSUF1I209F C265F G326C ) in an unevolved strain enabled it to grow on sucrose at the same rate (0.19 h-1 ) as the corresponding evolved strain. This study shows how laboratory evolution may improve sucrose uptake in yeast via heterologous plant transporters, highlights the importance of cysteine residues for their efficient expression, and warrants reinvestigation of PvSuf1's transport mechanism.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Mutación Missense , Phaseolus/enzimología , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Sacarosa/metabolismo , Adenosina Trifosfato/metabolismo , Anaerobiosis , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Proteínas Mutantes/genética , Phaseolus/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
14.
Metab Eng ; 45: 121-133, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196124

RESUMEN

Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02h-1 (LmSPase) and 0.06 ± 0.01h-1 (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01h-1 and 0.08 ± 0.00h-1, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.


Asunto(s)
Proteínas Bacterianas , Glucosiltransferasas , Leuconostoc mesenteroides/genética , Proteínas de Transporte de Membrana , Ingeniería Metabólica , Phaseolus/genética , Proteínas de Plantas , Saccharomyces cerevisiae , Sacarosa/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Transporte Biológico Activo/genética , Glucosiltransferasas/biosíntesis , Glucosiltransferasas/genética , Leuconostoc mesenteroides/enzimología , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29959255

RESUMEN

Agricultural residues such as sugar beet pulp and citrus peel are rich in pectin, which contains galacturonic acid as a main monomer. Pectin-rich residues are underexploited as feedstocks for production of bulk chemicals or biofuels. The anaerobic, fermentative conversion of d-galacturonate in anaerobic chemostat enrichment cultures provides valuable information toward valorization of these pectin-rich feedstocks. Replicate anaerobic chemostat enrichments, with d-galacturonate as the sole limiting carbon source and inoculum from cow rumen content and rotting orange peels, yielded stable microbial communities, which were dominated by a novel Lachnospiraceae species, for which the name "Candidatus Galacturonibacter soehngenii" was proposed. Acetate was the dominant catabolic product, with formate and H2 as coproducts. The observed molar ratio of acetate and the combined amounts of H2 and formate deviated significantly from 1, which suggested that some of the hydrogen and CO2 formed during d-galacturonate fermentation was converted into acetate via the Wood-Ljungdahl acetogenesis pathway. Indeed, metagenomic analysis of the enrichment cultures indicated that the genome of "Candidatus G. soehngenii" encoded enzymes of the adapted Entner-Doudoroff pathway for d-galacturonate metabolism as well as enzymes of the Wood-Ljungdahl pathway. The simultaneous operation of these pathways may provide a selective advantage under d-galacturonate-limited conditions by enabling a higher specific ATP production rate and lower residual d-galacturonate concentration than would be possible with a strictly fermentative metabolism of this carbon and energy source.IMPORTANCE This study on d-galacturonate metabolism by open, mixed-culture enrichments under anaerobic, d-galacturonate-limited chemostat conditions shows a stable and efficient fermentation of d-galacturonate into acetate as the dominant organic fermentation product. This fermentation stoichiometry and population analyses provide a valuable baseline for interpretation of the conversion of pectin-rich agricultural feedstocks by mixed microbial cultures. Moreover, the results of this study provide a reference for studies on the microbial metabolism of d-galacturonate under different cultivation regimes.


Asunto(s)
Ácido Acético/metabolismo , Clostridiales/metabolismo , Ácidos Hexurónicos/metabolismo , Anaerobiosis , Biocombustibles/análisis , Reactores Biológicos , Fermentación
16.
FEMS Yeast Res ; 18(8)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010916

RESUMEN

d-Glucose, d-xylose and l-arabinose are major sugars in lignocellulosic hydrolysates. This study explores fermentation of glucose-xylose-arabinose mixtures by a consortium of three 'specialist' Saccharomyces cerevisiae strains. A d-glucose- and l-arabinose-tolerant xylose specialist was constructed by eliminating hexose phosphorylation in an engineered xylose-fermenting strain and subsequent laboratory evolution. A resulting strain anaerobically grew and fermented d-xylose in the presence of 20 g L-1 of d-glucose and l-arabinose. A synthetic consortium that additionally comprised a similarly obtained arabinose specialist and a pentose non-fermenting laboratory strain, rapidly and simultaneously converted d-glucose and l-arabinose in anaerobic batch cultures on three-sugar mixtures. However, performance of the xylose specialist was strongly impaired in these mixed cultures. After prolonged cultivation of the consortium on three-sugar mixtures, the time required for complete sugar conversion approached that of a previously constructed and evolved 'generalist' strain. In contrast to the generalist strain, whose fermentation kinetics deteriorated during prolonged repeated-batch cultivation on a mixture of 20 g L-1d-glucose, 10 g L-1d-xylose and 5 g L-1l-arabinose, the evolved consortium showed stable fermentation kinetics. Understanding the interactions between specialist strains is a key challenge in further exploring the applicability of this synthetic consortium approach for industrial fermentation of lignocellulosic hydrolysates.


Asunto(s)
Arabinosa/metabolismo , Glucosa/metabolismo , Consorcios Microbianos , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Anaerobiosis , Fermentación , Ingeniería Metabólica , Saccharomyces cerevisiae/crecimiento & desarrollo
17.
FEMS Yeast Res ; 18(6)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771304

RESUMEN

Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose-xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83G673T allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L-1 glucose and 10 g L-1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.


Asunto(s)
Fermentación , Glucosa/metabolismo , Microbiología Industrial/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Reactores Biológicos , Evolución Molecular Dirigida , Etanol/metabolismo , Mutación/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Tiempo
18.
FEMS Yeast Res ; 18(8)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219856

RESUMEN

Acetic acid tolerance of the yeast Saccharomyces cerevisiae is manifested in several quantifiable parameters, of which the duration of the latency phase is one of the most studied. It has been shown recently that the latter parameter is mostly determined by a fraction of cells within the population that resumes proliferation upon exposure to acetic acid. The aim of the current study was to identify genetic determinants of the difference in this parameter between the highly tolerant strain MUCL 11987-9 and the laboratory strain CEN.PK113-7D. To this end, a combination of genetic mapping and pooled-segregant RNA sequencing was applied as a new approach. The genetic mapping data revealed four loci with a strong linkage to strain MUCL 11987-9, each containing still a large number of genes making the identification of the causal ones by traditional methods a laborious task. The genes were therefore prioritized by pooled-segregant RNA sequencing, which resulted in the identification of six genes within the identified loci showing differential expression. The relevance of the prioritized genes for the phenotype was verified by reciprocal hemizygosity analysis. Our data revealed the genes ESP1 and MET22 as two, so far unknown, genetic determinants of the size of the fraction of cells resuming proliferation upon exposure to acetic acid.


Asunto(s)
Ácido Acético/toxicidad , Antifúngicos/toxicidad , Tolerancia a Medicamentos , Nucleotidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Separasa/metabolismo , Mapeo Cromosómico , Nucleotidasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Separasa/genética , Análisis de Secuencia de ARN
19.
FEMS Yeast Res ; 18(6)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860442

RESUMEN

Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h-1 on l-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on l-arabinose in the presence of d-glucose and d-xylose. In four strains isolated from two independent evolution experiments the galactose-transporter gene GAL2 had been duplicated, with all alleles encoding Gal2N376T or Gal2N376I substitutions. In one strain, a single GAL2 allele additionally encoded a Gal2T89I substitution, which was subsequently also detected in the independently evolved strain IMS0010. In 14C-sugar-transport assays, Gal2N376S, Gal2N376T and Gal2N376I substitutions showed a much lower glucose sensitivity of l-arabinose transport and a much higher Km for d-glucose transport than wild-type Gal2. Introduction of the Gal2N376I substitution in a non-evolved strain enabled growth on l-arabinose in the presence of d-glucose. Gal2N376T, T89I and Gal2T89I variants showed a lower Km for l-arabinose and a higher Km for d-glucose than wild-type Gal2, while reverting Gal2N376T, T89I to Gal2N376 in an evolved strain negatively affected anaerobic growth on l-arabinose. This study indicates that optimal conversion of mixed-sugar feedstocks may require complex 'transporter landscapes', consisting of sugar transporters with complementary kinetic and regulatory properties.


Asunto(s)
Arabinosa/metabolismo , Evolución Molecular Dirigida , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anaerobiosis , Transporte Biológico , Fermentación , Microbiología Industrial , Cinética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo
20.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28600311

RESUMEN

Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is extremely slow (specific growth rate [µ] ≈ 0.01 h-1). Four independent evolution experiments in repeated batch cultures and accelerostats yielded strains whose growth rates (µ ≤ 0.36 h-1) in biotin-free and biotin-supplemented media were similar. Whole-genome resequencing of these evolved strains revealed up to 40-fold amplification of BIO1, which encodes pimeloyl-coenzyme A (CoA) synthetase. The additional copies of BIO1 were found on different chromosomes, and its amplification coincided with substantial chromosomal rearrangements. A key role of this gene amplification was confirmed by overexpression of BIO1 in strain CEN.PK113-7D, which enabled growth in biotin-free medium (µ = 0.15 h-1). Mutations in the membrane transporter genes TPO1 and/or PDR12 were found in several of the evolved strains. Deletion of TPO1 and PDR12 in a BIO1-overexpressing strain increased its specific growth rate to 0.25 h-1 The effects of null mutations in these genes, which have not been previously associated with biotin metabolism, were nonadditive. This study demonstrates that S. cerevisiae strains that carry the basic genetic information for biotin synthesis can be evolved for full biotin prototrophy and identifies new targets for engineering biotin prototrophy into laboratory and industrial strains of this yeast.IMPORTANCE Although biotin (vitamin H) plays essential roles in all organisms, not all organisms can synthesize this vitamin. Many strains of baker's yeast, an important microorganism in industrial biotechnology, contain at least some of the genes required for biotin synthesis. However, most of these strains cannot synthesize biotin at all or do so at rates that are insufficient to sustain fast growth and product formation. Consequently, this expensive vitamin is routinely added to baker's yeast cultures. In this study, laboratory evolution in biotin-free growth medium yielded new strains that grew as fast in the absence of biotin as in its presence. By analyzing the DNA sequences of evolved biotin-independent strains, mutations were identified that contributed to this ability. This work demonstrates full biotin independence of an industrially relevant yeast and identifies mutations whose introduction into other yeast strains may reduce or eliminate their biotin requirements.


Asunto(s)
Biotina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genoma Fúngico , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA