Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Traffic ; 20(5): 346-356, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30895685

RESUMEN

ß-Glucocerebrosidase (GBA) is the enzyme that degrades glucosylceramide in lysosomes. Defects in GBA that result in overall loss of enzymatic activity give rise to the lysosomal storage disorder Gaucher disease, which is characterized by the accumulation of glucosylceramide in tissue macrophages. Gaucher disease is currently treated by infusion of mannose receptor-targeted recombinant GBA. The recombinant GBA is thought to reach the lysosomes of macrophages, based on the impressive clinical response that is observed in Gaucher patients (type 1) receiving this enzyme replacement therapy. In this study, we used cyclophellitol-derived activity-based probes (ABPs) with a fluorescent reporter that irreversibly bind to the catalytic pocket of GBA, to visualize the active enzymes in a correlative microscopy approach. The uptake of pre-labeled recombinant enzyme was monitored by fluorescence and electron microscopy in human fibroblasts that stably expressed the mannose receptor. The endogenous active enzyme was simultaneously visualized by in situ labeling with the ABP containing an orthogonal fluorophore. This method revealed the efficient delivery of recombinant GBA to lysosomal target compartments that contained endogenous active enzyme.


Asunto(s)
Fibroblastos/metabolismo , Glucosilceramidasa/metabolismo , Células Cultivadas , Fibroblastos/ultraestructura , Glucosilceramidasa/genética , Células HEK293 , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
2.
J Biol Chem ; 293(26): 10042-10058, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29674318

RESUMEN

α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.


Asunto(s)
Enfermedad de Fabry/enzimología , Nicotiana/enzimología , alfa-Galactosidasa/metabolismo , Biocatálisis , Membrana Celular/metabolismo , Enfermedad de Fabry/patología , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Nicotiana/citología , alfa-Galactosidasa/genética
3.
J Biol Chem ; 291(15): 8295-307, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26833567

RESUMEN

The Golgi enzyme UDP-GlcNAc:lysosomal enzymeN-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), an α2ß2γ2hexamer, mediates the initial step in the addition of the mannose 6-phosphate targeting signal on newly synthesized lysosomal enzymes. This tag serves to direct the lysosomal enzymes to lysosomes. A key property of GlcNAc-1-phosphotransferase is its unique ability to distinguish the 60 or so lysosomal enzymes from the numerous non-lysosomal glycoproteins with identical Asn-linked glycans. In this study, we demonstrate that the two Notch repeat modules and the DNA methyltransferase-associated protein interaction domain of the α subunit are key components of this recognition process. Importantly, different combinations of these domains are involved in binding to individual lysosomal enzymes. This study also identifies the γ-binding site on the α subunit and demonstrates that in the majority of instances the mannose 6-phosphate receptor homology domain of the γ subunit is required for optimal phosphorylation. These findings serve to explain how GlcNAc-1-phosphotransferase recognizes a large number of proteins that lack a common structural motif.


Asunto(s)
Lisosomas/enzimología , Manosafosfatos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Secuencia de Aminoácidos , Eliminación de Gen , Células HeLa , Humanos , Lisosomas/metabolismo , Datos de Secuencia Molecular , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Receptores Notch/química , Receptores Notch/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
4.
Proc Natl Acad Sci U S A ; 111(9): 3532-7, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550498

RESUMEN

The lysosomal storage disorder mucolipidosis III αß is caused by mutations in the αß subunits of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (phosphotransferase). This Golgi-localized enzyme mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases, and loss of function results in impaired lysosomal targeting of these acid hydrolases and decreased lysosomal degradation. Here we show that two patient missense mutations, Lys4Gln and Ser15Tyr, in the N-terminal cytoplasmic tail of the α subunit of phosphotransferase impair retention of the catalytically active enzyme in the Golgi complex. This results in mistargeting of the mutant phosphotransferases to lysosomes, where they are degraded, or to the cell surface and release into the medium. The finding that mislocalization of active phosphotransferase is the basis for mucolipidosis III αß in a subset of patients shows the importance of single residues in the cytoplasmic tail of a Golgi-resident protein for localization to this compartment.


Asunto(s)
Aparato de Golgi/metabolismo , Mucolipidosis/enzimología , Mucolipidosis/etiología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Fluorescente , Mutación Missense/genética , Proteolisis
5.
Hum Mutat ; 37(7): 623-6, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27038293

RESUMEN

The lysosomal storage disorder ML III γ is caused by defects in the γ subunit of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the enzyme that tags lysosomal enzymes with the mannose 6-phosphate lysosomal targeting signal. In patients with this disorder, most of the newly synthesized lysosomal enzymes are secreted rather than being sorted to lysosomes, resulting in increased levels of these enzymes in the plasma. Several missense mutations in GNPTG, the gene encoding the γ subunit, have been reported in mucolipidosis III γ patients. However, in most cases, the impact of these mutations on γ subunit function has remained unclear. Here, we report that the variants c.316G>A (p.G106S), c.376G>A (p.G126S), and c.425G>A (p.C142Y) cause misfolding of the γ subunit, whereas another variant, c.857C>T (p.T286M), does not appear to alter γ subunit function. The misfolded γ subunits were retained in the ER and failed to rescue the lysosomal targeting of lysosomal acid glycosidases.


Asunto(s)
Mucolipidosis/genética , Mutación Missense , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Retículo Endoplásmico/enzimología , Células HeLa , Humanos , Polimorfismo de Nucleótido Simple , Pliegue de Proteína , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
6.
J Biol Chem ; 290(5): 3045-56, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25505245

RESUMEN

UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and ß subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αß. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αß patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and ß subunits.


Asunto(s)
Lisosomas/metabolismo , Mucolipidosis/enzimología , Mucolipidosis/genética , Mutación Missense/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Humanos , Mucolipidosis/metabolismo , Pez Cebra
7.
Proc Natl Acad Sci U S A ; 110(25): 10246-51, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733939

RESUMEN

UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) is an α2ß2γ2 heterohexamer that mediates the initial step in the formation of the mannose 6-phosphate recognition signal on lysosomal acid hydrolases. We previously reported that the specificity of the reaction is determined by the ability of the α/ß subunits to recognize a conformation-dependent protein determinant present on the acid hydrolases. We now present evidence that the DNA methyltransferase-associated protein (DMAP) interaction domain of the α subunit functions in this recognition process. First, GST-DMAP pulled down several acid hydrolases, but not nonlysosomal glycoproteins. Second, recombinant GlcNAc-1-phosphotransferase containing a missense mutation in the DMAP interaction domain (Lys732Asn) identified in a patient with mucolipidosis II exhibited full activity toward the simple sugar α-methyl d-mannoside but impaired phosphorylation of acid hydrolases. Finally, unlike the WT enzyme, expression of the K732N mutant in a zebrafish model of mucolipidosis II failed to correct the phenotypic abnormalities. These results indicate that the DMAP interaction domain of the α subunit functions in the selective recognition of acid hydrolase substrates and provides an explanation for the impaired phosphorylation of acid hydrolases in a patient with mucolipidosis II.


Asunto(s)
Anomalías Múltiples/metabolismo , Lisosomas/enzimología , Mucolipidosis/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Proteínas de Pez Cebra/metabolismo , Anomalías Múltiples/enzimología , Acetilglucosamina/metabolismo , Animales , Femenino , Células HEK293 , Células HeLa , Humanos , Hidrolasas/metabolismo , Masculino , Manosafosfatos/metabolismo , Ratones , Mucolipidosis/enzimología , Mutagénesis Sitio-Dirigida , Mutación Missense , Fosforilación/fisiología , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
8.
Traffic ; 12(7): 912-24, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21466643

RESUMEN

Osteoclasts are specialized cells that secrete lysosomal acid hydrolases at the site of bone resorption, a process critical for skeletal formation and remodeling. However, the cellular mechanism underlying this secretion and the organization of the endo-lysosomal system of osteoclasts have remained unclear. We report that osteoclasts differentiated in vitro from murine bone marrow macrophages contain two types of lysosomes. The major species is a secretory lysosome containing cathepsin K and tartrate-resistant acid phosphatase (TRAP), two hydrolases critical for bone resorption. These secretory lysosomes are shown to fuse with the plasma membrane, allowing the regulated release of acid hydrolases at the site of bone resorption. The other type of lysosome contains cathepsin D, but little cathepsin K or TRAP. Osteoclasts from Gnptab(-/-) (gene encoding GlcNAc-1-phosphotransferase α, ß-subunits) mice, which lack a functional mannose 6-phosphate (Man-6-P) targeting pathway, show increased secretion of cathepsin K and TRAP and impaired secretory lysosome formation. However, cathepsin D targeting was intact, showing that osteoclasts have a Man-6-P-independent pathway for selected acid hydrolases.


Asunto(s)
Lisosomas/metabolismo , Manosafosfatos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/ultraestructura , Fosfatasa Ácida/metabolismo , Animales , Catepsina D/metabolismo , Catepsina K/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Endosomas/metabolismo , Endosomas/ultraestructura , Isoenzimas/metabolismo , Lisosomas/ultraestructura , Macrófagos/citología , Macrófagos/fisiología , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Transducción de Señal/fisiología , Fosfatasa Ácida Tartratorresistente , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
9.
BMC Med Genet ; 14: 106, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24103465

RESUMEN

BACKGROUND: Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to its cognate transfer RNA and therefore plays an essential role in protein biosynthesis. METHODS: We used exome sequencing, aminoacylation assays, homology modeling, and immuno-isolation of transfected MARS to identify and characterize mutations in the methionyl-tRNA synthetase gene (MARS) in an infant with an unexplained multi-organ phenotype. RESULTS: We identified compound heterozygous mutations (F370L and I523T) in highly conserved regions of MARS. The parents were each heterozygous for one of the mutations. Aminoacylation assays documented that the F370L and I523T MARS mutants had 18 ± 6% and 16 ± 6%, respectively, of wild-type activity. Homology modeling of the human MARS sequence with the structure of E. coli MARS showed that the F370L and I523T mutations are in close proximity to each other, with residue I523 located in the methionine binding pocket. We found that the F370L and I523T mutations did not affect the association of MARS with the multisynthetase complex. CONCLUSION: This infant expands the catalogue of inherited human diseases caused by mutations in aminoacyl-tRNA synthetase genes.


Asunto(s)
Metionina-ARNt Ligasa/genética , Adulto , Secuencia de Aminoácidos , Médula Ósea/patología , Encéfalo/diagnóstico por imagen , Exones , Femenino , Heterocigoto , Humanos , Lactante , Hepatopatías/genética , Hepatopatías/patología , Imagen por Resonancia Magnética , Metionina/metabolismo , Metionina-ARNt Ligasa/química , Datos de Secuencia Molecular , Mutación , Fenotipo , Estructura Terciaria de Proteína , Radiografía , Análisis de Secuencia de ADN
11.
Methods Enzymol ; 598: 217-235, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29306436

RESUMEN

Glycosidases mediate the fragmentation of glycoconjugates in the body, including the vital recycling of endogenous molecules. Several inherited diseases in man concern deficiencies in lysosomal glycosidases degrading glycosphingolipids. Prominent is Gaucher disease caused by an impaired lysosomal ß-glucosidase (glucocerebrosidase, GBA) and resulting in pathological lysosomal storage of glucosylceramide (glucocerebroside) in tissue macrophages. GBA is a retaining glucosidase with a characteristic glycosyl-enzyme intermediate formed during catalysis. Using the natural suicide inhibitor cyclophellitol as a lead, we developed mechanism-based irreversible inhibitors of GBA equipped with a fluorescent reporter. These reagents covalently link to the catalytic nucleophile residue of GBA and permit specific and sensitive visualization of active enzyme molecules. The amphiphilic activity-based probes (ABPs) allow in situ detection of active GBA in cells and organisms. Furthermore, they may be used to biochemically confirm the diagnosis of Gaucher disease and they might assist in screening for small compounds interacting with the catalytic pocket. While the focus of this chapter is ABPs for ß-glucosidases and Gaucher disease, the described concept has meanwhile been extended to other retaining glycosidases and related disease conditions as well.


Asunto(s)
Pruebas de Enzimas/métodos , Glucosilceramidasa/análisis , Glicoesfingolípidos/metabolismo , Sondas Moleculares/farmacología , Línea Celular , Ciclohexanoles/química , Ciclohexanoles/farmacología , Pruebas de Enzimas/instrumentación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fibroblastos , Colorantes Fluorescentes/química , Enfermedad de Gaucher/diagnóstico , Glucosilceramidasa/antagonistas & inhibidores , Glucosilceramidasa/metabolismo , Humanos , Lisosomas/metabolismo , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Sondas Moleculares/química , Coloración y Etiquetado/instrumentación , Coloración y Etiquetado/métodos
13.
ACS Cent Sci ; 2(5): 351-8, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-27280170

RESUMEN

The development of small molecule activity-based probes (ABPs) is an evolving and powerful area of chemistry. There is a major need for synthetically accessible and specific ABPs to advance our understanding of enzymes in health and disease. α-Glucosidases are involved in diverse physiological processes including carbohydrate assimilation in the gastrointestinal tract, glycoprotein processing in the endoplasmic reticulum (ER), and intralysosomal glycogen catabolism. Inherited deficiency of the lysosomal acid α-glucosidase (GAA) causes the lysosomal glycogen storage disorder, Pompe disease. Here, we design a synthetic route for fluorescent and biotin-modified ABPs for in vitro and in situ monitoring of α-glucosidases. We show, through mass spectrometry, gel electrophoresis, and X-ray crystallography, that α-glucopyranose configured cyclophellitol aziridines label distinct retaining α-glucosidases including GAA and ER α-glucosidase II, and that this labeling can be tuned by pH. We illustrate a direct diagnostic application in Pompe disease patient cells, and discuss how the probes may be further exploited for diverse applications.

14.
Biol Open ; 4(10): 1316-25, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26405051

RESUMEN

The lysosomal enzyme receptor protein (LERP) of Drosophila melanogaster is the ortholog of the mammalian cation-independent mannose 6-phosphate (Man 6-P) receptor, which mediates trafficking of newly synthesized lysosomal acid hydrolases to lysosomes. However, flies lack the enzymes necessary to make the Man 6-P mark, and the amino acids implicated in Man 6-P binding by the mammalian receptor are not conserved in LERP. Thus, the function of LERP in sorting of lysosomal enzymes to lysosomes in Drosophila is unclear. Here, we analyze the consequence of LERP depletion in S2 cells and intact flies. RNAi-mediated knockdown of LERP in S2 cells had little or no effect on the cellular content or secretion of several lysosomal hydrolases. We generated a novel Lerp null mutation, Lerp(F6), which abolishes LERP protein expression. Lerp mutants have normal viability and fertility and display no overt phenotypes other than reduced body weight. Lerp mutant flies exhibit a 30-40% decrease in the level of several lysosomal hydrolases, and are hypersensitive to dietary chloroquine and starvation, consistent with impaired lysosome function. Loss of LERP also enhances an eye phenotype associated with defective autophagy. Our findings implicate Lerp in lysosome function and autophagy.

15.
Cell Logist ; 4(3): e954441, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610721

RESUMEN

The cation-independent mannose 6-phosphate (Man-6-P) receptor (CI-MPR) binds newly synthesized, Man-6-P-containing lysosomal acid hydrolases in the trans-Golgi network (TGN) for clathrin-mediated transport to endosomes. It has remained unresolved, however, whether acid hydrolase binding is required for exit of the CI-MPR from the TGN. To address this question we used a B cell line derived from a Mucolipidosis type II (MLII)/I-cell disease patient. In MLII patients, acid hydrolases do not acquire the Man-6-P recognition marker and as a consequence do not bind to the CI-MPR. This causes secretion of the majority of the acid hydrolases and a decreased lysosomal activity resulting in typical inclusion bodies. In agreement herewith, ultrastructural analysis of the MLII patient derived B cells showed numerous inclusion bodies with undigested material, which we defined as autolysosomes. By quantitative immuno-electron microscopy we then studied the distribution of the CI-MPR in these cells. We found that the level of co-localization of TGN-localized CI-MPR and clathrin was similar in MLII and control B cells. Moreover, the CI-MPR was readily found in endosomes of MLII cells and the TGN-to-early endosome ratio of CI-MPR labeling was unaltered. These data show that there is no block in TGN exit of the CI-MPR in the absence of Man-6-P-modified acid hydrolases. Notably, late endosomes and inclusion bodies in MLII B cells contained increased levels of the CI-MPR, which likely reflects the reduced degradative capacity of these compartments.

16.
Nat Commun ; 4: 1361, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23322049

RESUMEN

Targeted delivery of lysosome-associated membrane proteins is important for lysosome stability and function. Here we identify a pathway for transport of lysosome-associated membrane proteins directly from the trans-Golgi network to late endosomes, which exists in parallel to mannose 6-phosphate receptor and clathrin-dependent transport of lysosomal enzymes to early endosomes. By immunoelectron microscopy we localized endogenous LAMP-1 and -2 as well as LAMP-1-mGFP to non-coated, biosynthetic carriers at the trans-Golgi network and near late endosomes. These LAMP carriers were negative for mannose 6-phosphate receptor, adaptor-protein complex-1, secretory albumin and endocytic markers, but contained the homotypic fusion and protein sorting complex component hVps41 and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein VAMP7. Knockdown of hVps41 or VAMP7 resulted in the accumulation of lysosome-associated membrane protein carriers, whereas knockdown of hVps39 or hVps18 did not, indicating that the effect of hVps41 is independent of CORVET/HOPS. Mannose 6-phosphate receptor carriers remained unaffected upon hVps41 or VAMP7 knockdown, implicating that hVps41 and VAMP7 are specifically involved in the fusion of trans-Golgi network-derived lysosome-associated membrane protein carriers with late endosomes.


Asunto(s)
Endosomas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Animales , Clatrina/metabolismo , Endosomas/ultraestructura , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Células Hep G2 , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas , Modelos Biológicos , Transporte de Proteínas , Ratas , Receptor IGF Tipo 2/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Secretoras/ultraestructura , Red trans-Golgi/ultraestructura
17.
Mol Biol Cell ; 22(8): 1135-47, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325625

RESUMEN

We previously reported that mice deficient in UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase (mucolipidosis type II or Gnptab -/- mice), the enzyme that initiates the addition of the mannose 6-phosphate lysosomal sorting signal on acid hydrolases, exhibited extensive vacuolization of their exocrine gland cells, while the liver, brain, and muscle appeared grossly unaffected. Similar pathological findings were observed in several exocrine glands of patients with mucolipidosis II. To understand the basis for this cell type-specific abnormality, we analyzed these tissues in Gnptab -/- mice using a combined immunoelectron microscopy and biochemical approach. We demonstrate that the vacuoles in the exocrine glands are enlarged autolysosomes containing undigested cytoplasmic material that accumulate secondary to deficient lysosomal function. Surprisingly, the acid hydrolase levels in these tissues ranged from normal to modestly decreased, in contrast to skin fibroblasts, which accumulate enlarged lysosomes and/or autolysosomes also but exhibit very low levels of acid hydrolases. We propose that the lysosomal defect in the exocrine cells is caused by the combination of increased secretion of the acid hydrolases via the constitutive pathway along with their entrapment in secretory granules. Taken together, our results provide new insights into the mechanisms of the tissue-specific abnormalities seen in mucolipidosis type II.


Asunto(s)
Glándulas Exocrinas/patología , Lisosomas/patología , Mucolipidosis/patología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Vacuolas/patología , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Glándulas Exocrinas/enzimología , Fibroblastos/enzimología , Fibroblastos/patología , Eliminación de Gen , Humanos , Lisosomas/enzimología , Manosafosfatos/metabolismo , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Mucolipidosis/enzimología , Especificidad de Órganos , Vesículas Secretoras/enzimología , Vesículas Secretoras/patología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Vacuolas/enzimología
18.
Dev Cell ; 21(5): 966-74, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22055344

RESUMEN

Osteoclasts resorb bone via the ruffled border, whose complex folds are generated by secretory lysosome fusion with bone-apposed plasma membrane. Lysosomal fusion with the plasmalemma results in acidification of the resorptive microenvironment and release of CatK to digest the organic matrix of bone. The means by which secretory lysosomes are directed to fuse with the ruffled border are enigmatic. We show that proteins essential for autophagy, including Atg5, Atg7, Atg4B, and LC3, are important for generating the osteoclast ruffled border, the secretory function of osteoclasts, and bone resorption in vitro and in vivo. Further, Rab7, which is required for osteoclast function, localizes to the ruffled border in an Atg5-dependent manner. Thus, autophagy proteins participate in polarized secretion of lysosomal contents into the extracellular space by directing lysosomes to fuse with the plasma membrane. These findings are in keeping with a putative link between autophagy genes and human skeletal homeostasis.


Asunto(s)
Autofagia , Resorción Ósea/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Membrana Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/metabolismo
19.
Histochem Cell Biol ; 129(3): 253-66, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18274773

RESUMEN

Lysosomes are specialized compartments for the degradation of endocytosed and intracellular material and essential regulators of cellular homeostasis. The importance of lysosomes is illustrated by the rapidly growing number of human disorders related to a defect in lysosomal functioning. Here, we review current insights in the mechanisms of lysosome biogenesis and protein sorting within the endo-lysosomal system. We present increasing evidence for the existence of parallel pathways for the delivery of newly synthesized lysosomal proteins directly from the trans-Golgi network (TGN) to the endo-lysosomal system. These pathways are either dependent or independent of mannose 6-phosphate receptors and likely involve multiple exits for lysosomal proteins from the TGN. In addition, we discuss the different endosomal intermediates and subdomains that are involved in sorting of endocytosed cargo. Throughout our review, we highlight some examples in the literature showing how imaging, especially electron microscopy, has made major contributions to our understanding of the endo-lysosomal system today.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Animales , Humanos , Imaginación , Proteínas/metabolismo , Receptor IGF Tipo 2/metabolismo , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA