Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(50): e2311265120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055740

RESUMEN

Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.


Asunto(s)
Linfocitos B , Cadenas J de Inmunoglobulina , Inmunoglobulina M/metabolismo , Cadenas J de Inmunoglobulina/metabolismo , Linfocitos B/metabolismo , Antígenos , Macrófagos/metabolismo
2.
Am J Hum Genet ; 108(8): 1367-1384, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34260947

RESUMEN

Age-related macular degeneration (AMD) is the principal cause of blindness in the elderly population. A strong effect on AMD risk has been reported for genetic variants at the CFH locus, encompassing complement factor H (CFH) and the complement-factor-H-related (CFHR) genes, but the underlying mechanisms are not fully understood. We aimed to dissect the role of factor H (FH) and FH-related (FHR) proteins in AMD in a cohort of 202 controls and 216 individuals with AMD. We detected elevated systemic levels of FHR-1 (p = 1.84 × 10-6), FHR-2 (p = 1.47 × 10-4), FHR-3 (p = 1.05 × 10-5) and FHR-4A (p = 1.22 × 10-2) in AMD, whereas FH concentrations remained unchanged. Common AMD genetic variants and haplotypes at the CFH locus strongly associated with FHR protein concentrations (e.g., FH p.Tyr402His and FHR-2 concentrations, p = 3.68 × 10-17), whereas the association with FH concentrations was limited. Furthermore, in an International AMD Genomics Consortium cohort of 17,596 controls and 15,894 individuals with AMD, we found that low-frequency and rare protein-altering CFHR2 and CFHR5 variants associated with AMD independently of all previously reported genome-wide association study (GWAS) signals (p = 5.03 × 10-3 and p = 2.81 × 10-6, respectively). Low-frequency variants in CFHR2 and CFHR5 led to reduced or absent FHR-2 and FHR-5 concentrations (e.g., p.Cys72Tyr in CFHR2 and FHR-2, p = 2.46 × 10-16). Finally, we showed localization of FHR-2 and FHR-5 in the choriocapillaris and in drusen. Our study identifies FHR proteins as key proteins in the AMD disease mechanism. Consequently, therapies that modulate FHR proteins might be effective for treating or preventing progression of AMD. Such therapies could target specific individuals with AMD on the basis of their genotypes at the CFH locus.


Asunto(s)
Proteínas Inactivadoras del Complemento C3b/metabolismo , Factor H de Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Predisposición Genética a la Enfermedad , Haplotipos , Degeneración Macular/patología , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Proteínas Inactivadoras del Complemento C3b/genética , Proteínas del Sistema Complemento/genética , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/etiología , Degeneración Macular/metabolismo
3.
Allergy ; 79(7): 1952-1961, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38439527

RESUMEN

BACKGROUND: The noninflammatory immunoglobulin G4 (IgG4) is linked to tolerance and is unique to humans. Although poorly understood, prolonged antigenic stimulation and IL-4-signaling along the T helper 2-axis may be instrumental in IgG4 class switching. Recently, repeated SARS-CoV-2 mRNA vaccination has been linked to IgG4 skewing. Although widely used immunosuppressive drugs have been shown to only moderately affect humoral responses to SARS-CoV-2 mRNA vaccination, the effect on IgG4 switching has not been investigated. METHODS: Here we study the impact of such immunosuppressive drugs, including the IL-4 receptor-blocking antibody dupilumab, on IgG4 skewing upon repeated SARS-CoV-2 mRNA vaccination. Receptor-binding domain (RBD) specific antibody responses were longitudinally measured in 600 individuals, including patients with immune-mediated inflammatory diseases treated with a TNF inhibitor (TNFi) and/or methotrexate (MTX), dupilumab, and healthy/untreated controls, after repeated mRNA vaccination. RESULTS: We observed a substantial increase in the proportion of RBD-specific IgG4 antibodies (median 21%) in healthy/untreated controls after third vaccination. This IgG4 skewing was profoundly reduced in dupilumab-treated patients (<1%). Unexpectedly, an equally strong suppression of IgG4 skewing was observed in TNFi-treated patients (<1%), whereas MTX caused a modest reduction (7%). RBD-specific total IgG levels were hardly affected by these immunosuppressive drugs. Minimal skewing was observed, when primary vaccination was adenoviral vector-based. CONCLUSIONS: Our results imply a critical role for IL-4/IL-13 as well as TNF in vivo IgG4 class switching. These novel findings advance our understanding of IgG4 class switch dynamics, and may benefit humoral tolerance induction strategies, treatment of IgG4 pathologies and mRNA vaccine optimization.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Femenino , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , COVID-19/prevención & control , COVID-19/inmunología , Adulto , Vacunas de ARNm/inmunología , Anciano , Vacunación , Vacunas contra la COVID-19/inmunología , Inmunosupresores/uso terapéutico , Inmunosupresores/farmacología , Anticuerpos Antivirales/inmunología
4.
J Immunol ; 207(6): 1545-1554, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34408013

RESUMEN

Human IgG contains one evolutionarily conserved N-linked glycan in its Fc region at position 297. This glycan is crucial for Fc-mediated functions, including its induction of the classical complement cascade. This is induced after target recognition through the IgG-Fab regions, allowing neighboring IgG-Fc tails to associate through Fc:Fc interaction, ultimately leading to hexamer formation. This hexamerization seems crucial for IgG to enable efficient interaction with the globular heads of the first complement component C1q and subsequent complement activation. In this study, we show that galactose incorporated in the IgG1-Fc enhances C1q binding, C4, C3 deposition, and complement-dependent cellular cytotoxicity in human erythrocytes and Raji cells. IgG1-Fc sialylation slightly enhanced binding of C1q, but had little effect on downstream complement activation. Using various mutations that decrease or increase hexamerization capacity of IgG1, we show that IgG1-Fc galactosylation has no intrinsic effect on C1q binding to IgG1, but enhances IgG1 hexamerization potential and, thereby, complement activation. These data suggest that the therapeutic potential of Abs can be amplified without introducing immunogenic mutations, by relatively simple glycoengineering.


Asunto(s)
Activación de Complemento , Inmunoglobulina G , Complemento C1q , Humanos , Inmunoglobulina G/genética , Mutación
5.
Transfus Med Hemother ; 50(4): 321-329, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37767280

RESUMEN

Introduction: Neutrophils promote chronic inflammation and release neutrophil extracellular traps (NETs) that can drive inflammatory responses. Inflammation influences progression of sickle cell disease (SCD), and a role for NETs has been suggested in the onset of vaso-occlusive crisis (VOC). We aimed to identify factors in the circulation of these patients that provoke NET release, with a focus on triggers associated with hemolysis. Methods: Paired serum and plasma samples during VOC and steady state of 18 SCD patients (HbSS/HbSß0-thal and HbSC/HbSß+-thal) were collected. Cell-free heme, hemopexin, and labile plasma iron have been measured in the plasma samples of the SCD patients. NETs formation by human neutrophils from healthy donors induced by serum of SCD patients was studied using confocal microscopy and staining for extracellular DNA using Sytox, followed by quantification of surface coverage using ImageJ. Results: Eighteen patients paired samples obtained during VOC and steady state were available (11 HbSS/HbSß0-thal and 7 HbSC/HbSß+-thal). We observed high levels of systemic heme and iron, concomitant with low levels of the heme-scavenger hemopexin in sera of patients with SCD, both during VOC and in steady state. In our in vitro experiments, neutrophils released NETs when exposed to sera from SCD patients. The release of NETs was associated with high levels of circulating iron in these sera. Although hemin triggered NET formation in vitro, addition of hemopexin to scavenge heme did not suppress NET release in SCD sera. By contrast, the iron scavengers deferoxamine and apotransferrin attenuated NET formation in a significant proportion of SCD sera. Discussion: Our results suggest that redox-active iron in the circulation of non-transfusion-dependent SCD patients activates neutrophils to release NETs, and hence, exerts a direct pro-inflammatory effect. Thus, we propose that chelation of iron requires further investigation as a therapeutic strategy in SCD.

6.
J Immunol ; 205(7): 1778-1786, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32848031

RESUMEN

The complement system plays an important role in our innate immune system. Complement activation results in clearance of pathogens, immune complex, and apoptotic cells. The host is protected from complement-mediated damage by several complement regulators. Factor H (FH) is the most important fluid-phase regulator of the alternative pathway of the complement system. Heterozygous mutations in FH are associated with complement-related diseases such as atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration. We recently described an agonistic anti-FH mAb that can potentiate the regulatory function of FH. This Ab could serve as a potential new drug for aHUS patients and alternative to C5 blockade by eculizumab. However, it is unclear whether this Ab can potentiate FH mutant variants in addition to wild-type (WT) FH. In this study, the functionality and potential of the agonistic Ab in the context of pathogenic aHUS-related FH mutant proteins was investigated. The binding affinity of recombinant WT FH and the FH variants, W1183L, V1197A, R1210C, and G1194D to C3b was increased upon addition of the potentiating Ab and similarly, the decay-accelerating activity of all mutants is increased. The potentiating anti-FH Ab is able to restore the surface regulatory function of most of the tested FH mutants to WT FH levels on a human HAP-1 cell line and on sheep erythrocytes. In conclusion, our potentiating anti-FH is broadly active and able to enhance both WT FH function as well as most aHUS-associated FH variants tested in this study.


Asunto(s)
Anticuerpos/metabolismo , Síndrome Hemolítico Urémico Atípico/genética , Complemento C3b/metabolismo , Factor H de Complemento/inmunología , Genotipo , Animales , Línea Celular , Activación de Complemento , Factor H de Complemento/agonistas , Factor H de Complemento/genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Mutación/genética , Polimorfismo Genético , Unión Proteica
7.
J Immunol ; 205(12): 3491-3499, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33127820

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infections often cause only mild disease that may evoke relatively low Ab titers compared with patients admitted to hospitals. Generally, total Ab bridging assays combine good sensitivity with high specificity. Therefore, we developed sensitive total Ab bridging assays for detection of SARS-CoV-2 Abs to the receptor-binding domain (RBD) and nucleocapsid protein in addition to conventional isotype-specific assays. Ab kinetics was assessed in PCR-confirmed, hospitalized coronavirus disease 2019 (COVID-19) patients (n = 41) and three populations of patients with COVID-19 symptoms not requiring hospital admission: PCR-confirmed convalescent plasmapheresis donors (n = 182), PCR-confirmed hospital care workers (n = 47), and a group of longitudinally sampled symptomatic individuals highly suspect of COVID-19 (n = 14). In nonhospitalized patients, the Ab response to RBD is weaker but follows similar kinetics, as has been observed in hospitalized patients. Across populations, the RBD bridging assay identified most patients correctly as seropositive. In 11/14 of the COVID-19-suspect cases, seroconversion in the RBD bridging assay could be demonstrated before day 12; nucleocapsid protein Abs emerged less consistently. Furthermore, we demonstrated the feasibility of finger-prick sampling for Ab detection against SARS-CoV-2 using these assays. In conclusion, the developed bridging assays reliably detect SARS-CoV-2 Abs in hospitalized and nonhospitalized patients and are therefore well suited to conduct seroprevalence studies.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , COVID-19/inmunología , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología , Adulto , COVID-19/diagnóstico , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Convalecencia , Femenino , Humanos , Pruebas Inmunológicas , Masculino , Persona de Mediana Edad
8.
Transfus Med Hemother ; 49(5): 288-297, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37969865

RESUMEN

Introduction: Plasma exchange therapy (PEX) was standard treatment for thrombotic microangiopathy before eculizumab was available and is still widely applied. However, most PEX patients still ultimately progress to end-stage renal disease (ESRD). It has been suggested that infusion of plasma that contains active complement may induce additional complement activation with subsequent activation of neutrophils and endothelial cells, leading to exacerbation of organ damage and deterioration of renal function. Objective: This observational pilot study examines the effect of hemodialysis, eculizumab and PEX before and after treatment in plasma of aHUS patients on complement-, neutrophil and endothelial cell activation. Methods: Eleven patients were included in this pilot study. Six patients were treated with hemodialysis, 2 patients received regular infusions of eculizumab, and 3 patients were on a regular schedule for PEX. Patients were followed during 3 consecutive treatments. Blood samples were taken before and after patients received their treatment. Results: Complement activation products increased in plasma of patients after PEX, as opposed to patients treated with hemodialysis or eculizumab. Increased levels of complement activation products were detected in omniplasma used for PEX. Additionally, activation of neutrophils and endothelial cells was observed in patients after hemodialysis and PEX, but not in patients receiving eculizumab treatment. Conclusion: In this pilot study we observed that PEX induced complement and neutrophil activation, and that omniplasma contains significant amounts of complement activation products. Additionally, we demonstrate that hemodialysis induces activation of neutrophils and endothelial cells. Complement activation with subsequent neutrophil activation may contribute to the deterioration of organ function and may result in ESRD. Further randomized controlled studies are warranted to investigate the effect of PEX on complement- and neutrophil activation in patients with thrombotic microangiopathy.

9.
J Intern Med ; 290(4): 922-927, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34137469

RESUMEN

BACKGROUND: Nucleosomes and neutrophil extracellular traps (NETs) are important in the pathophysiology of disseminated intravascular coagulation (DIC). Fibrinogen, as an acute phase reactant, may be protective by engaging neutrophils. We hypothesize that DIC can occur when NET formation becomes uncontrolled in relation to low fibrinogen levels. PATIENTS/METHOD: The ratio of both circulating nucleosomes and human neutrophil elastase alpha-1-antitrypsine complexes (HNE-a1ATc) to fibrinogen was correlated to thrombocytopenia, DIC and organ failure in 64 critically ill coagulopathic patients. RESULTS: A high nucleosome to fibrinogen ratio correlated with thrombocytopenia and organ failure (ρ -0.391, p 0.01 and ρ 0.556, p 0.01, respectively). A high HNE-a1ATc to fibrinogen ratio correlated with thrombocytopenia, DIC and organ failure (ρ -0.418, p 0.01, ρ 0.391, p 0.01 and ρ 0.477, p 0.01 respectively). CONCLUSION: These findings support the hypothesis that fibrinogen is protective against DIC by counterbalancing excessive neutrophil activation.


Asunto(s)
Coagulación Intravascular Diseminada , Fibrinógeno/análisis , Neutrófilos/citología , Nucleosomas , Trombocitopenia , Enfermedad Crítica , Coagulación Intravascular Diseminada/diagnóstico , Humanos
10.
J Neuroinflammation ; 16(1): 279, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31883521

RESUMEN

BACKGROUND: The complement system is a vital component of the inflammatory response occurring during bacterial meningitis. Blocking the complement system was shown to improve the outcome of experimental pneumococcal meningitis. Complement factor H (FH) is a complement regulatory protein inhibiting alternative pathway activation but is also exploited by the pneumococcus to prevent complement activation on its surface conferring serum resistance. METHODS: In a nationwide prospective cohort study of 1009 episodes with community-acquired bacterial meningitis, we analyzed whether genetic variations in CFH influenced FH cerebrospinal fluid levels and/or disease severity. Subsequently, we analyzed the role of FH in our pneumococcal meningitis mouse model using FH knock-out (Cfh-/-) mice and wild-type (wt) mice. Finally, we tested whether adjuvant treatment with human FH (hFH) improved outcome in a randomized investigator blinded trial in a pneumococcal meningitis mouse model. RESULTS: We found the major allele (G) of single nucleotide polymorphism in CFH (rs6677604) to be associated with low FH cerebrospinal fluid concentration and increased mortality. In patients and mice with bacterial meningitis, FH concentrations were elevated during disease and Cfh-/- mice with pneumococcal meningitis had increased mortality compared to wild-type mice due to C3 depletion. Adjuvant treatment of wild-type mice with purified human FH led to complement inhibition but also increased bacterial outgrowth which resulted in similar disease outcomes. CONCLUSION: Low FH levels contribute to mortality in pneumococcal meningitis but adjuvant treatment with FH at a clinically relevant time point is not beneficial.


Asunto(s)
Factor H de Complemento/líquido cefalorraquídeo , Factor H de Complemento/genética , Meningitis Bacterianas/genética , Meningitis Bacterianas/inmunología , Meningitis Bacterianas/mortalidad , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA