Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939855

RESUMEN

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Asunto(s)
Proteínas Portadoras , Colestasis , Enfermedades Renales , Hepatopatías , Glicoproteínas de Membrana , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Ratones , Animales , Colestasis/complicaciones , Colestasis/metabolismo , Riñón/metabolismo , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Conductos Biliares/metabolismo , Hepatopatías/metabolismo , Sodio
2.
Neuroimage ; 269: 119903, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708974

RESUMEN

Whereas neural representations of spatial information are commonly studied in vision, olfactory stimuli might also be able to create such representations via the trigeminal system. We explored in two independent multi-method electroencephalography-functional near-infrared spectroscopy (EEG+fNIRS) experiments (n1=18, n2=14) if monorhinal odor stimuli can evoke spatial representations in the brain. We tested whether this representation depends on trigeminal properties of the stimulus, and if the retention in short-term memory follows the "sensorimotor recruitment theory", using multivariate representational similarity analysis (RSA). We demonstrate that the delta frequency band up to 5 Hz across the scull entail spatial information of which nostril has been stimulated. Delta frequencies were localized in a network involving primary and secondary olfactory, motor-sensory and occipital regions. RSA on fNIRS data showed that monorhinal stimulations evoke neuronal representations in motor-sensory regions and that this representation is kept stable beyond the time of perception. These effects were no longer valid when the odor stimulus did not sufficiently stimulate the trigeminal nerve as well. Our results are first evidence that the trigeminal system can create spatial representations of bimodal odors in the brain and that these representations follow similar principles as the other sensory systems.


Asunto(s)
Odorantes , Olfato , Humanos , Olfato/fisiología , Electroencefalografía , Encéfalo , Nervio Trigémino/fisiología
3.
Arch Toxicol ; 97(11): 3005-3017, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37615677

RESUMEN

Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Dibenzodioxinas Policloradas , Humanos , Alimentos , Salud Pública , Medición de Riesgo
4.
Part Fibre Toxicol ; 19(1): 1, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34983569

RESUMEN

BACKGROUND: Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. RESULTS: This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. CONCLUSION: Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods.


Asunto(s)
Metadatos , Proyectos de Investigación , Bases de Datos Factuales , Reproducibilidad de los Resultados
5.
Arch Toxicol ; 95(7): 2571-2587, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34095968

RESUMEN

Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.


Asunto(s)
Agua Potable , Fluoruros , Animales , Estudios Epidemiológicos , Europa (Continente) , Fluoruros/toxicidad , Estudios Longitudinales
6.
Chem Res Toxicol ; 33(5): 1121-1144, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32233399

RESUMEN

The remarkable advances coming about through nanotechnology promise to revolutionize many aspects of modern life; however, these advances come with a responsibility for due diligence to ensure that they are not accompanied by adverse consequences for human health or the environment. Many novel nanomaterials (having at least one dimension <100 nm) could be highly mobile if released into the environment and are also very reactive, which has raised concerns for potential adverse impacts including, among others, the potential for neurotoxicity. Several lines of evidence led to concerns for neurotoxicity, but perhaps none more than observations that inhaled nanoparticles impinging on the mucosal surface of the nasal epithelium could be internalized into olfactory receptor neurons and transported by axoplasmic transport into the olfactory bulbs without crossing the blood-brain barrier. From the olfactory bulb, there is concern that nanomaterials may be transported deeper into the brain and affect other brain structures. Of course, people will not be exposed to only engineered nanomaterials, but rather such exposures will occur in a complex mixture of environmental materials, some of which are incidentally generated particles of a similar inhalable size range to engineered nanomaterials. To date, most experimental studies of potential neurotoxicity of nanomaterials have not considered the potential exposure sources and pathways that could lead to exposure, and most studies of nanomaterial exposure have not considered potential neurotoxicity. Here, we present a review of potential sources of exposures to nanoparticles, along with a review of the literature on potential neurotoxicity of nanomaterials. We employ the linked concepts of an aggregate exposure pathway (AEP) and an adverse outcome pathway (AOP) to organize and present the material. The AEP includes a sequence of key events progressing from material sources, release to environmental media, external exposure, internal exposure, and distribution to the target site. The AOP begins with toxicant at the target site causing a molecular initiating event and, like the AEP, progress sequentially to actions at the level of the cell, organ, individual, and population. Reports of nanomaterial actions are described at every key event along the AEP and AOP, except for changes in exposed populations that have not yet been observed. At this last stage, however, there is ample evidence of population level effects from exposure to ambient air particles that may act similarly to engineered nanomaterials. The data give an overall impression that current exposure levels may be considerably lower than those reported experimentally to be neurotoxic. This impression, however, is tempered by the absence of long-term exposure studies with realistic routes and levels of exposure to address concerns for chronic accumulation of materials or damage. Further, missing across the board are "key event relationships", which are quantitative expressions linking the key events of either the AEP or the AOP, making it impossible to quantitatively project the likelihood of adverse neurotoxic effects from exposure to nanomaterials or to estimate margins of exposure for such relationships.


Asunto(s)
Encéfalo/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Nanoestructuras/toxicidad , Rutas de Resultados Adversos , Animales , Humanos , Nanoestructuras/efectos adversos
7.
Arch Toxicol ; 94(5): 1687-1701, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32185413

RESUMEN

Sensory irritation is an acute adverse effect caused by chemicals that stimulate chemoreceptors of the upper respiratory tract or the mucous membranes of the outer eye. The avoidance of this end point is of uttermost importance in regulatory toxicology. In this study, repeated exposures to ethyl acrylate were analyzed to investigate possible carryover effects from day to day for different markers of sensory irritation. Thirty healthy subjects were exposed for 4 h on five subsequent days to ethyl acrylate at concentrations permitted by the German occupational exposure limit at the time of study. Ratings of eye irritation as well as eye blinking frequencies indicate the elicitation of sensory irritation. These markers of sensory irritation showed a distinct time course on every single day. However, cumulative carryover effects could not be identified across the week for any marker. The rhinological and biochemical markers could not reveal hints for more pronounced sensory irritation. Neither increased markers of neurogenic inflammation nor markers of immune response could be identified. Furthermore, the performance on neurobehavioral tests was not affected by ethyl acrylate and despite the strong odor of ethyl acrylate the participants improved their performances from day to day. While the affected physiological marker, the increased eye blinking frequency stays roughly on the same level across the week, subjective markers like perception of eye irritation decrease slightly from day to day though the temporal pattern of, i.e., eye irritation perception stays the same on each day. A hypothetical model of eye irritation time course derived from PK/PD modeling of the rabbit eye could explain the within-day time course of eye irritation ratings repeatedly found in this study more precisely.


Asunto(s)
Acrilatos/toxicidad , Contaminantes Ocupacionales del Aire/toxicidad , Exposición por Inhalación/estadística & datos numéricos , Irritantes , Administración por Inhalación , Adulto , Animales , Ojo , Femenino , Voluntarios Sanos , Humanos , Masculino , Exposición Profesional , Odorantes , Conejos , Umbral Sensorial , Valores Limites del Umbral
8.
Arch Toxicol ; 94(1): 151-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712839

RESUMEN

The first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate into neuroepithelial cells for 6 days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)) and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (1) the concentration-dependence, (2) the time dependence, and (3) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This 'RoFA predictor gene set' may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.


Asunto(s)
Células-Madre Neurales/efectos de los fármacos , Trastornos del Neurodesarrollo/inducido químicamente , Neurotoxinas/farmacología , Formación de Roseta/métodos , Pruebas de Toxicidad/métodos , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo
9.
Arch Toxicol ; 94(5): 1375-1415, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32382957

RESUMEN

Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Fluoruros/toxicidad , Síndromes de Neurotoxicidad/epidemiología , Experimentación Animal , Animales , Arsénico , Niño , Agua Potable , Estudios Epidemiológicos , Europa (Continente) , Femenino , Humanos , Compuestos de Metilmercurio , Nivel sin Efectos Adversos Observados
11.
Arch Toxicol ; 93(6): 1609-1637, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31250071

RESUMEN

Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Administración Oral , Algoritmos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Dosis Máxima Tolerada , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Máquina de Vectores de Soporte
13.
Arch Toxicol ; 92(10): 3149-3162, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097702

RESUMEN

Toluene is a well-known neurotoxic organic solvent and a major component of many industrial and commercial products such as adhesives, paint thinners and gasoline. Many workers are regularly exposed to toluene in their working environment and occupational exposure limits (OELs) have been set to avoid adverse health effects. These OELs or short-term exposure limits vary from 14 to 300 ppm across countries partly due to heterogeneity of the findings from animal and human studies about its neurotoxic effects and the evaluation of the adversity of the underlying mechanisms. Furthermore, its acute neurophysiological effects remain poorly understood in humans. The purpose of this study was to investigate the effects of acute exposure to toluene on cortical excitability, plasticity, and implicit motor learning in healthy volunteers. Seventeen subjects were assessed with different transcranial magnetic stimulation measurements: motor thresholds, short-latency intracortical inhibition and intracortical facilitation, and short-interval afferent inhibition before and after clean air or toluene (single peak of 200 ppm) administration. Furthermore, we evaluated long-term potentiation-like neuroplasticity induced by anodal transcranial direct current stimulation (tDCS) over the motor cortex, and the participants conducted a motor sequence learning task, the serial reaction time task. Our findings revealed that toluene abolished the plasticity induced by anodal tDCS, attenuated intracortical facilitation, and increased inhibition in the short-latency afferent inhibition measure, while cortico-spinal excitability and intracortical inhibition were not affected. On the behavioural level, toluene did not alter performance of the motor learning task. These results suggest that toluene might act by modulating NMDA receptor activity, as well as cortical glutamatergic and cholinergic neurotransmission in the human brain. This study encourages further research to obtain more knowledge about mechanisms of action and effects of toluene on both naïve and chronically exposed populations.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Corteza Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Tolueno/toxicidad , Adulto , Potenciales Evocados Motores/efectos de los fármacos , Femenino , Humanos , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Corteza Motora/fisiología , Exposición Profesional/efectos adversos , Tiempo de Reacción/efectos de los fármacos , Descanso/fisiología , Pruebas de Toxicidad Aguda , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal
14.
Arch Toxicol ; 91(9): 3051-3064, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28204865

RESUMEN

Human data about the potency of ethyl acrylate to evoke sensory irritation is currently not available. Therefore, we conducted an experimental exposure study and the magnitude of chemosensory effects in healthy human volunteers was mathematically modeled by combining the factors current concentration (c) and duration/time (t). In a repeated-measures design, 19 subjects were exposed for 4 h to constant and varying concentrations (including peaks of 5 and 10 ppm) of ethyl acrylate with either a 2.5 or 5 ppm time-weighted average (TWA) concentration. Clean air served as control condition. Nasal lavage fluid, eye blinking frequencies, and rhinomanometry were used as physiological measures of sensory irritation. Several subjective ratings assessed olfactory and trigeminal perceptions. The blinking frequency was significantly increased during the varying 5 ppm condition. Regardless of the TWA concentration, varying exposures caused stronger effects than constant exposures. Our mathematical modeling showed that olfactory perceptions generally decreased over time while ratings of eye irritation increased over time even under the constant 5 ppm condition. Including the current concentration in the mathematical modeling always increased the goodness of fit substantially. The results showed that the intensity of sensory irritation could be predicted best with a complex c × t model. During the 2.5 ppm conditions, only the current concentration predicted the ratings and time-dependent processes could not be observed. However, in both 5 ppm TWA conditions strong eye irritations and increased blinking frequency, only at the end of the 4-h exposures a dose-dependency of these adverse effects was clearly shown.


Asunto(s)
Acrilatos/toxicidad , Ojo/efectos de los fármacos , Irritantes/toxicidad , Acrilatos/administración & dosificación , Adulto , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Irritantes/administración & dosificación , Masculino , Modelos Teóricos , Líquido del Lavado Nasal , Odorantes/análisis , Rinomanometría , Medición de Riesgo , Factores de Tiempo
15.
Arch Toxicol ; 91(8): 2865-2877, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28160021

RESUMEN

Manganese (Mn) is an essential trace element with well characterized neurotoxic effects in high concentrations. Neurochemically, the initial neurotoxic effect of Mn is the perturbation of striatal γ-aminobutyric acid levels. Specific tasks for the assessment of cognitive functions subserved by fronto-striatal loops are available as the stop-change task (SCT) assessing control of multi-component behavior and action cascading. In a cross-sectional study, fifty male welders and 28 age-matched controls completed the SCT during a whole day examination. Reaction times, responses accuracy, and event-related potentials (ERPs) from electroencephalogram (EEG) recordings were analyzed. The shift exposure of the welders to respirable Mn was stratified by 20 µg/m3 in 23 low-exposed (median = 4.7 µg/m3) and 27 high-exposed welders (median = 86.0 µg/m3). Welders graduation was lower and was therefore included in the analyses. The task-related factor (stop-change delay, SCD) modified the responses as expected; however, the lack of an interaction "SCD × group" revealed no differences between welders and controls. EEG data showed that the "SCD" modulated the amplitude of the P3 ERP in controls stronger than in welders. There was no difference between the two groups of welders and no association between airborne or systemic Mn and the P3 ERP. Moreover, the P3 amplitude was smaller in subjects with lower education. These results showed that multitasking performance and cognitive flexibility are not impaired in welders. The electrophysiological results gave a weak hint that relevant neurobiological processes were different in welders as compared to controls but this may be related to lower education.


Asunto(s)
Cognición/efectos de los fármacos , Manganeso/toxicidad , Exposición Profesional/efectos adversos , Soldadura , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Estudios de Casos y Controles , Neurociencia Cognitiva/métodos , Estudios Transversales , Electroencefalografía , Humanos , Masculino , Manganeso/análisis , Persona de Mediana Edad , Pruebas Neuropsicológicas , Exposición Profesional/análisis , Tiempo de Reacción
16.
Arch Toxicol ; 91(2): 839-864, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27188386

RESUMEN

Stem cell-based in vitro test systems can recapitulate specific phases of human development. In the UKK test system, human pluripotent stem cells (hPSCs) randomly differentiate into cells of the three germ layers and their derivatives. In the UKN1 test system, hPSCs differentiate into early neural precursor cells. During the normal differentiation period (14 days) of the UKK system, 570 genes [849 probe sets (PSs)] were regulated >fivefold; in the UKN1 system (6 days), 879 genes (1238 PSs) were regulated. We refer to these genes as 'developmental genes'. In the present study, we used genome-wide expression data of 12 test substances in the UKK and UKN1 test systems to understand the basic principles of how chemicals interfere with the spontaneous transcriptional development in both test systems. The set of test compounds included six histone deacetylase inhibitors (HDACis), six mercury-containing compounds ('mercurials') and thalidomide. All compounds were tested at the maximum non-cytotoxic concentration, while valproic acid and thalidomide were additionally tested over a wide range of concentrations. In total, 242 genes (252 PSs) in the UKK test system and 793 genes (1092 PSs) in the UKN1 test system were deregulated by the 12 test compounds. We identified sets of 'diagnostic genes' appropriate for the identification of the influence of HDACis or mercurials. Test compounds that interfered with the expression of developmental genes usually antagonized their spontaneous development, meaning that up-regulated developmental genes were suppressed and developmental genes whose expression normally decreases were induced. The fraction of compromised developmental genes varied widely between the test compounds, and it reached up to 60 %. To quantitatively describe disturbed development on a genome-wide basis, we recommend a concept of two indices, 'developmental potency' (D p) and 'developmental index' (D i), whereby D p is the fraction of all developmental genes that are up- or down-regulated by a test compound, and D i is the ratio of overrepresentation of developmental genes among all genes deregulated by a test compound. The use of D i makes hazard identification more sensitive because some compounds compromise the expression of only a relatively small number of genes but have a high propensity to deregulate developmental genes specifically, resulting in a low D p but a high D i. In conclusion, the concept based on the indices D p and D i offers the possibility to quantitatively express the propensity of test compounds to interfere with normal development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Madre/efectos de los fármacos , Pruebas de Toxicidad/métodos , Transcriptoma/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Humanos , Ratones , Células Madre Pluripotentes/efectos de los fármacos , Células Madre/fisiología , Teratógenos/toxicidad , Transcriptoma/genética
17.
Arch Toxicol ; 91(11): 3477-3505, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29051992

RESUMEN

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.


Asunto(s)
Rutas de Resultados Adversos , Ecotoxicología/métodos , Animales , Ecotoxicología/historia , Historia del Siglo XXI , Humanos , Ratones Endogámicos C57BL , Control de Calidad , Medición de Riesgo/métodos , Biología de Sistemas , Toxicocinética , Compuestos de Vinilo/efectos adversos
18.
Stress ; 19(1): 18-27, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26553419

RESUMEN

Previous studies have reported enhanced vigilance for threat-related information in response to acute stress. While it is known that acute stress modulates sensory systems in humans, its impact on olfaction and the olfactory detection of potential threats is less clear. Two psychophysical experiments examined, if acute stress lowers the detection threshold for foul-smelling 2-mercaptoethanol. Participants in Experiment 1 (N = 30) and Experiment 2 (N = 32) were randomly allocated to a control group or a stress group. Participants in the stress group underwent a purely psychosocial stressor (public mental arithmetic) in Experiment 1 and a stressor that combined a physically demanding task with social-evaluative threat in Experiment 2 (socially evaluated cold-pressor test). In both experiments, olfactory detection thresholds were repeatedly assessed by means of dynamic dilution olfactometry. Each threshold measurement consisted of three trials conducted using an ascending method of limits. Participants in the stress groups showed the expected changes in heart rate, salivary cortisol, and mood measures in response to stress. About 20 min after the stressor, participants in the stress groups could detect 2-mercaptoethanol at a lower concentration than participants in the corresponding control groups. Our results show that acute stress lowers the detection threshold for a malodor.


Asunto(s)
Mercaptoetanol , Olfato/fisiología , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatología , Adulto , Afecto/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Hidrocortisona/metabolismo , Masculino , Distribución Aleatoria , Saliva/química , Umbral Sensorial , Adulto Joven
19.
Analyst ; 141(11): 3444, 2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27141911

RESUMEN

Correction for 'Micropatterning neuronal networks' by Heike Hardelauf, et al., Analyst, 2014, 139, 3256-3264.

20.
Arch Toxicol ; 90(6): 1399-413, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27037703

RESUMEN

Peripheral nerves innervating the mucosae of the nose, mouth, and throat protect the organism against chemical hazards. Upon their stimulation, characteristic perceptions (e.g., stinging and burning) and various reflexes are triggered (e.g., sneezing and cough). The potency of a chemical to cause sensory irritation can be estimated by a mouse bioassay assessing the concentration-dependent decrease in the respiratory rate (50 % decrease: RD50). The involvement of the N. trigeminus and its sensory neurons in the irritant-induced decrease in respiratory rates are not well understood to date. In calcium imaging experiments, we tested which of eight different irritants (RD50 5-730 ppm) could induce responses in primary mouse trigeminal ganglion neurons. The tested irritants acetophenone, 2-ethylhexanol, hexyl isocyanate, isophorone, and trimethylcyclohexanol stimulated responses in trigeminal neurons. Most of these responses depended on functional TRPA1 or TRPV1 channels. For crotyl alcohol, 3-methyl-1-butanol, and sodium metabisulfite, no activation could be observed. 2-ethylhexanol can activate both TRPA1 and TRPV1, and at low contractions (100 µM) G protein-coupled receptors (GPCRs) seem to be involved. GPCRs might also be involved in the mediation of the responses to trimethylcyclohexanol. By using neurobiological tools, we showed that sensory irritation in vivo could be based on the direct activation of TRP channels but also on yet unknown interactions with GPCRs present in trigeminal neurons. Our results showed that the potency suggested by the RD50 values was not reflected by direct nerve-compound interaction.


Asunto(s)
Irritantes/toxicidad , Neuronas/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Irritantes/química , Ratones , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/inervación , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Neuronas/metabolismo , Neuronas/patología , Cultivo Primario de Células , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inervación , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Frecuencia Respiratoria/efectos de los fármacos , Canal Catiónico TRPA1 , Ganglio del Trigémino/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA