Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Biol ; 21(1): 121, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226201

RESUMEN

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Genómica , Inversión Cromosómica , Cisteína , Disulfuros
2.
Mol Ecol ; 28(9): 2272-2289, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30913335

RESUMEN

Members of phylum Cnidaria are an ancient group of venomous animals and rely on a number of specialized tissues to produce toxins in order to fulfil a range of ecological roles including prey capture, defence against predators, digestion and aggressive encounters. However, limited comprehensive analyses of the evolution and expression of toxin genes currently exist for cnidarian species. In this study, we use genomic and transcriptomic sequencing data to examine gene copy number variation and selective pressure on toxin gene families in phylum Cnidaria. Additionally, we use quantitative RNA-seq and mass spectrometry imaging to understand expression patterns and tissue localization of toxin production in sea anemones. Using genomic data, we demonstrate that the first large-scale expansion and diversification of known toxin genes occurs in phylum Cnidaria, a process we also observe in other venomous lineages, which we refer to as convergent amplification. Our analyses of selective pressure on sea anemone toxin gene families reveal that purifying selection is the dominant mode of evolution for these genes and that phylogenetic inertia is an important determinant of toxin gene complement in this group. The gene expression and tissue localization data revealed that specific genes and proteins from toxin gene families show strong patterns of tissue and developmental-phase specificity in sea anemones. Overall, convergent amplification and phylogenetic inertia have strongly influenced the distribution and evolution of the toxin complement observed in sea anemones, while the production of venoms with different compositions across tissues is related to the functional and ecological roles undertaken by each tissue type.


Asunto(s)
Venenos de Cnidarios/genética , Expresión Génica , Anémonas de Mar/genética , Animales , Venenos de Cnidarios/química , Espectrometría de Masas , Filogenia , Selección Genética , Análisis de Secuencia de ARN
3.
Mar Drugs ; 17(12)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842369

RESUMEN

Serine proteases play pivotal roles in normal physiology and a spectrum of patho-physiological processes. Accordingly, there is considerable interest in the discovery and design of potent serine protease inhibitors for therapeutic applications. This led to concerted efforts to discover versatile and robust molecular scaffolds for inhibitor design. This investigation is a bioprospecting study that aims to isolate and identify protease inhibitors from the cnidarian Actinia tenebrosa. The study isolated two Kunitz-type protease inhibitors with very similar sequences but quite divergent inhibitory potencies when assayed against bovine trypsin, chymostrypsin, and a selection of human sequence-related peptidases. Homology modeling and molecular dynamics simulations of these inhibitors in complex with their targets were carried out and, collectively, these methodologies enabled the definition of a versatile scaffold for inhibitor design. Thermal denaturation studies showed that the inhibitors were remarkably robust. To gain a fine-grained map of the residues responsible for this stability, we conducted in silico alanine scanning and quantified individual residue contributions to the inhibitor's stability. Sequences of these inhibitors were then used to search for Kunitz homologs in an A. tenebrosa transcriptome library, resulting in the discovery of a further 14 related sequences. Consensus analysis of these variants identified a rich molecular diversity of Kunitz domains and expanded the palette of potential residue substitutions for rational inhibitor design using this domain.


Asunto(s)
Cnidarios/clasificación , Serina Proteasas/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Animales , Bovinos , Quimotripsina/antagonistas & inhibidores , Quimotripsina/metabolismo , Simulación por Computador , Humanos , Simulación de Dinámica Molecular , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/aislamiento & purificación , Tripsina/efectos de los fármacos , Tripsina/metabolismo , Inhibidores de Tripsina/aislamiento & purificación , Inhibidores de Tripsina/farmacología
4.
BMC Genomics ; 17(1): 850, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27806695

RESUMEN

BACKGROUND: Innate immune genes tend to be highly conserved in metazoans, even in early divergent lineages such as Cnidaria (jellyfish, corals, hydroids and sea anemones) and Porifera (sponges). However, constant and diverse selection pressures on the immune system have driven the expansion and diversification of different immune gene families in a lineage-specific manner. To investigate how the innate immune system has evolved in a subset of sea anemone species (Order: Actiniaria), we performed a comprehensive and comparative study using 10 newly sequenced transcriptomes, as well as three publically available transcriptomes, to identify the origins, expansions and contractions of candidate and novel immune gene families. RESULTS: We characterised five conserved genes and gene families, as well as multiple novel innate immune genes, including the newly recognised putative pattern recognition receptor CniFL. Single copies of TLR, MyD88 and NF-κB were found in most species, and several copies of IL-1R-like, NLR and CniFL were found in almost all species. Multiple novel immune genes were identified with domain architectures including the Toll/interleukin-1 receptor (TIR) homology domain, which is well documented as functioning in protein-protein interactions and signal transduction in immune pathways. We hypothesise that these genes may interact as novel proteins in immune pathways of cnidarian species. Novelty in the actiniarian immunome is not restricted to only TIR-domain-containing proteins, as we identify a subset of NLRs which have undergone neofunctionalisation and contain 3-5 N-terminal transmembrane domains, which have so far only been identified in two anthozoan species. CONCLUSIONS: This research has significance in understanding the evolution and origin of the core eumetazoan gene set, including how novel innate immune genes evolve. For example, the evolution of transmembrane domain containing NLRs indicates that these NLRs may be membrane-bound, while all other metazoan and plant NLRs are exclusively cytosolic receptors. This is one example of how species without an adaptive immune system may evolve innovative solutions to detect pathogens or interact with native microbiota. Overall, these results provide an insight into the evolution of the innate immune system, and show that early divergent lineages, such as actiniarians, have a diverse repertoire of conserved and novel innate immune genes.


Asunto(s)
Genoma , Genómica , Inmunidad Innata/genética , Anémonas de Mar/genética , Anémonas de Mar/inmunología , Animales , Biología Computacional/métodos , Epistasis Genética , Evolución Molecular , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genómica/métodos , Familia de Multigenes , Proteína Inhibidora de la Apoptosis Neuronal/genética , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Filogenia , Reproducibilidad de los Resultados , Anémonas de Mar/clasificación , Transcriptoma
5.
Insects ; 13(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35621786

RESUMEN

The larvae of frugivorous tephritid fruit flies feed within fruit and are global pests of horticulture. With the reduced use of pesticides, alternative control methods are needed, of which fruit resistance is one. In the current study, we explicitly tested for phenotypic evidence of induced fruit defences by running concurrent larval survival experiments with fruit on or off the plant, assuming that defence induction would be stopped or reduced by fruit picking. This was accompanied by RT-qPCR analysis of fruit defence and insect detoxification gene expression. Our fruit treatments were picking status (unpicked vs. picked) and ripening stage (colour break vs. fully ripe), our fruit fly was the polyphagous Bactrocera tryoni, and larval survival was assessed through destructive fruit sampling at 48 and 120 h, respectively. The gene expression study targeted larval and fruit tissue samples collected at 48 h and 120 h from picked and unpicked colour-break fruit. At 120 h in colour-break fruit, larval survival was significantly higher in the picked versus unpicked fruit. The gene expression patterns in larval and plant tissue were not affected by picking status, but many putative plant defence and insect detoxification genes were upregulated across the treatments. The larval survival results strongly infer an induced defence mechanism in colour-break tomato fruit that is stronger/faster in unpicked fruits; however, the gene expression patterns failed to provide the same clear-cut treatment effect. The lack of conformity between these results could be related to expression changes in unsampled candidate genes, or due to critical changes in gene expression that occurred during the unsampled periods.

6.
Genes (Basel) ; 12(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34356088

RESUMEN

Sea anemones vary immensely in life history strategies, environmental niches and their ability to regenerate. While the sea anemone Nematostella vectensis is the starlet of many key regeneration studies, recent work is emerging on the diverse regeneration strategies employed by other sea anemones. This manuscript will explore current molecular mechanisms of regeneration employed by non-model sea anemones Exaiptasia diaphana (an emerging model species for coral symbiosis studies) and Calliactis polypus (a less well-studied species) and examine how these species compare to the model sea anemone N. vectensis. We summarize the field of regeneration within sea anemones, within the greater context of phylum Cnidaria and in other invertebrate models of regeneration. We also address the current knowledge on two key systems that may be implemented in regeneration: the innate immune system and developmental pathways, including future aspects of work and current limitations.


Asunto(s)
Regeneración/fisiología , Anémonas de Mar/metabolismo , Anémonas de Mar/fisiología , Animales , Evolución Biológica , Evolución Molecular , Genómica/métodos , Inmunidad Innata
7.
Mar Biotechnol (NY) ; 22(2): 285-307, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32016679

RESUMEN

Regeneration of a limb or tissue can be achieved through multiple different pathways and mechanisms. The sea anemone Exaiptasia pallida has been observed to have excellent regenerative proficiency, but this has not yet been described transcriptionally. In this study, we examined the genetic expression changes during a regenerative timecourse and reported key genes involved in regeneration and wound healing. We found that the major response was an early (within the first 8 h) upregulation of genes involved in cellular movement and cell communication, which likely contribute to a high level of tissue plasticity resulting in the rapid regeneration response observed in this species. We find the immune system was only transcriptionally active in the first 8 h post-amputation and conclude, in accordance with previous literature, that the immune system and regeneration have an inverse relationship. Fifty-nine genes (3.8% of total) differentially expressed during regeneration were identified as having no orthologues in other species, indicating that regeneration in E. pallida may rely on the activation of species-specific novel genes. Additionally, taxonomically restricted novel genes, including species-specific novels, and highly conserved genes were identified throughout the regenerative timecourse, showing that both may work in concert to achieve complete regeneration.


Asunto(s)
Regeneración/genética , Anémonas de Mar/genética , Animales , Comunicación Celular/genética , Movimiento Celular/genética , Perfilación de la Expresión Génica , Regeneración/fisiología , Anémonas de Mar/inmunología , Anémonas de Mar/metabolismo , Cicatrización de Heridas/genética
8.
Genome Biol Evol ; 10(1): 94-107, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29220418

RESUMEN

Female post-mating behaviors are regulated by complex factors involving males, females, and the environment. In insects, plant secondary compounds that males actively forage for, may indirectly modify female behaviors by altering male behavior and physiology. In the tephritid fruit fly, Bactrocera tryoni, females mated with males previously fed on plant-derived phenylpropanoids (="lures" based on usage in tephritid literature), have longer mating refractoriness, greater fecundity, and reduced longevity than females mated with non-lure fed males. This system thus provides a model for studying transcriptional changes associated with those post-mating behaviors, as the genes regulating the phenotypic changes are likely to be expressed at a greater magnitude than in control females. We performed comparative transcriptome analyses using virgin B. tryoni females, females mated with control males (control-mated), and females mated with lure-fed males (lure-mated). We found 331 differentially expressed genes (DEGs) in control-mated females and 80 additional DEGs in lure-mated females. Although DEGs in control-mated females are mostly immune response genes and chorion proteins, as reported in Drosophila species, DEGs in lure-mated females are titin-like muscle proteins, histones, sperm, and testis expressed proteins which have not been previously reported. While transcripts regulating mating (e.g., lingerer) did not show differential expression in either of the mated female classes, the odorant binding protein Obp56a was down-regulated. The exclusively enriched or suppressed genes in lure-mated females, novel transcripts such as titin and histones, and several taxa-specific transcripts reported here can shed more light on post-mating transcriptional changes, and this can help understand factors possibly regulating female post-mating behaviors.


Asunto(s)
Conducta Sexual Animal , Tephritidae/genética , Transcriptoma , Animales , Femenino , Fertilidad , Ontología de Genes , Herbivoria , Masculino , Plantas/metabolismo , Reproducción , Tephritidae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA