Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(1): 158-165, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31760748

RESUMEN

When groundwater-based drinking water supply becomes contaminated, the timing and source of contamination are obvious questions. However, contaminants often have diffuse sources and different contaminants may have different sources even in a single groundwater well, making these questions complicated to answer. Age dating of groundwater has been used to reconstruct contaminant travel times to wells; however, critics have highlighted that groundwater flow is often complex with mixing of groundwater of different ages. In drinking water wells, where water is typically abstracted from a large depth interval, such mixing is even more problematic. We present a way to overcome some of the obstacles in identifying the source and age of contaminants in drinking water wells by combining depth-specific sampling with age tracer modeling, particle tracking simulations, geological characterization, and contaminant properties. This multitool approach was applied to a drinking water well, where bentazon and dichlorprop contamination was found to have different pollutant sources and release histories, even though both pesticides can be associated with the same land use. Bentazon was derived from recent application to a golf course, while dichlorprop was derived from agricultural use more than 30 years ago. The advantages, limitations, and pitfalls of the proposed course of action are then further discussed.


Asunto(s)
Agua Subterránea , Plaguicidas , Contaminantes Químicos del Agua , Distribución por Edad , Monitoreo del Ambiente , Abastecimiento de Agua
2.
Environ Res ; 159: 24-38, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28763731

RESUMEN

This paper proposes a conceptual framework to systematize the use of Nature-based solutions (NBS) by integrating their resilience potential into Natural Assurance Scheme (NAS), focusing on insurance value as corner stone for both awareness-raising and valuation. As such one of its core goal is to align research and pilot projects with infrastructure development constraints and priorities. Under NAS, the integrated contribution of natural infrastructure to Disaster Risk Reduction is valued in the context of an identified growing need for climate robust infrastructure. The potential of NAS benefits and trade-off are explored by through the alternative lens of Disaster Resilience Enhancement (DRE). Such a system requires a joint effort of specific knowledge transfer from research groups and stakeholders to potential future NAS developers and investors. We therefore match the knowledge gaps with operational stages of the development of NAS from a project designer perspective. We start by highlighting the key role of the insurance industry in incentivizing and assessing disaster and slow onset resilience enhancement strategies. In parallel we place the public sector as potential kick-starters in DRE initiatives through the existing initiatives and constraints of infrastructure procurement. Under this perspective the paper explores the required alignment of Integrated Water resources planning and Public investment systems. Ultimately this will provide the possibility for both planners and investors to design no regret NBS and mixed Grey-Green infrastructures systems. As resources and constraints are widely different between infrastructure development contexts, the framework does not provide explicit methodological choices but presents current limits of knowledge and know-how. In conclusion the paper underlines the potential of NAS to ease the infrastructure gap in water globally by stressing the advantages of investment in the protection, enhancement and restoration of natural capital as an effective climate change adaptation investment.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Análisis Costo-Beneficio , Desarrollo Económico , Cambio Climático , Modelos Teóricos
3.
J Environ Qual ; 43(1): 86-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25602543

RESUMEN

The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts.

4.
Sci Total Environ ; 738: 139693, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531586

RESUMEN

Climate change and the overexploitation of natural resources increase the need to integrate sustainable development policies at both national and international levels to fit the demands of a growing population. In 2015 the United Nations (UN) established the 2030 Agenda for sustainable development with the aim of eradicating extreme poverty, reducing inequality and protecting the planet. The Agenda 2030 highlights the importance of biodiversity and the functioning of ecosystems to maintain economic activities and the well-being of local communities. Nature Based Solutions (NBS) support biodiversity conservation and the functioning of ecosystems. NBS are increasingly seen as innovative solutions to manage water-related risks while transforming natural capital into a source of green growth and sustainable development. In this context, NBS could potentially contribute to the achievement of several Sustainable Development Goals (SDGs) by promoting the delivery of bundles of ecosystem services together generating various social, economic and environmental co-benefits. However, to achieve the full potential of NBS, it is necessary to recognize the trade-offs and synergies of the co-benefits associated with their implementation. To this aim, we have adopted a system perspective and a multi-sectoral approach to analyse the potential of NBS to deliver co-benefits while at the same time reducing the negative effects of water-related hazards. Using the case study of Copenhagen, we have analysed the relationships between the co-benefits associated with the scenario of the restoration of the Ladegaardsaa urban river. Our hypothesis is that enhancing the understanding of the social, economic and environmental factors of the system, including mutual influences and trade-offs, could improve the decision-making process and thereby enhance the capability of NBS to contribute to the achievement of the SDGs.

5.
J Environ Qual ; 37(5): 1909-17, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18689752

RESUMEN

Prediction of the movement of water and solutes in the vadose zone requires information on the distribution of spatial trends and heterogeneities in porous media. The present study describes different lithofacies origination mainly from glaciofluvial deposits. Among different lithofacies, hydrological relationships were investigated. By means of a two-dimensional hydrological model it was evaluated how the flow of water and leaching of metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one) was affected. Two selected large outcrop sections consisting of glacial outwash deposits were used in the modeling study. Eleven different lithofacies were distinguished and described in terms of texture distribution, sorting, bedding style, and external boundaries based on excavated soil profiles from 27 locations representing seven predominantly sandy landforms in Denmark. Undisturbed soil columns were sampled from each of the lithofacies and brought to the laboratory to be analyzed. With respect to their soil hydraulic properties, the different lithofacies formed four different hydrofacies having relatively homogeneous, hydrogeological properties. Two large outcrop sections from one of the locations (a gravel pit) located near the terminal moraine of the former Weichsel glacier were used for the HYDRUS-2D modeling. Modeling results revealed that the spatial distribution of sedimentary bodies affected water flow and the leaching of metribuzin.


Asunto(s)
Plaguicidas/química , Dióxido de Silicio/química , Suelo/análisis , Abastecimiento de Agua/análisis , Agua/química , Dinamarca , Monitoreo del Ambiente , Tamaño de la Partícula
6.
Environ Pollut ; 156(3): 794-802, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18639963

RESUMEN

Pesticide mineralization and sorption were determined in 75 soil samples from 15 individually drilled holes through the vadose zone along a 28km long transect of the Danish outwash plain. Mineralization of the phenoxyacetic acid herbicide MCPA was high both in topsoils and in most subsoils, while metribuzine and methyltriazine-amine was always low. Organic matter and soil pH was shown to be responsible for sorption of MCPA and metribuzine in the topsoils. The sorption of methyltriazine-amine in topsoil was positively correlated with clay and negatively correlated with the pH of the soil. Sorption of glyphosate was tested also high in the subsoils. One-dimensional MACRO modeling of the concentration of MCPA, metribuzine and methyltriazine-amine at 2m depth calculated that the average concentration of MCPA and methyltriazine-amine in the groundwater was below the administrative limit of 0.1mug/l in all tested profiles while metribuzine always exceeded the 0.1mug/l threshold value.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético/análisis , Herbicidas/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , Adsorción , Silicatos de Aluminio , Biodegradación Ambiental , Arcilla , Dinamarca , Monitoreo del Ambiente/métodos , Glicina/análogos & derivados , Glicina/análisis , Concentración de Iones de Hidrógeno , Modelos Estadísticos , Tamaño de la Partícula , Material Particulado , Ríos , Triazinas/análisis , Contaminantes Químicos del Agua/análisis , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA