Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Oncol ; 56(11): 1544-1553, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28885084

RESUMEN

BACKGROUND: Radiomic analyses of CT images provide prognostic information that can potentially be used for personalized treatment. However, heterogeneity of acquisition- and reconstruction protocols influences robustness of radiomic analyses. The aim of this study was to investigate the influence of different CT-scanners, slice thicknesses, exposures and gray-level discretization on radiomic feature values and their stability. MATERIAL AND METHODS: A texture phantom with ten different inserts was scanned on nine different CT-scanners with varying tube currents. Scans were reconstructed with 1.5 mm or 3 mm slice thickness. Image pre-processing comprised gray-level discretization in ten different bin widths ranging from 5 to 50 HU and different resampling methods (i.e., linear, cubic and nearest neighbor interpolation to 1 × 1 × 3 mm3 voxels) were investigated. Subsequently, 114 textural radiomic features were extracted from a 2.1 cm3 sphere in the center of each insert. The influence of slice thickness, exposure and bin width on feature values was investigated. Feature stability was assessed by calculating the concordance correlation coefficient (CCC) in a test-retest setting and for different combinations of scanners, tube currents and slice thicknesses. RESULTS: Bin width influenced feature values, but this only had a marginal effect on the total number of stable features (CCC > 0.85) when comparing different scanners, slice thicknesses or exposures. Most radiomic features were affected by slice thickness, but this effect could be reduced by resampling the CT-images before feature extraction. Statistics feature 'energy' was the most dependent on slice thickness. No clear correlation between feature values and exposures was observed. CONCLUSIONS: CT-scanner, slice thickness and bin width affected radiomic feature values, whereas no effect of exposure was observed. Optimization of gray-level discretization to potentially improve prognostic value can be performed without compromising feature stability. Resampling images prior to feature extraction decreases the variability of radiomic features.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/métodos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA