Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Nucl Med ; 65(2): 192-198, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164565

RESUMEN

[18F]tetrafluoroborate ([18F]TFB) is an emerging PET tracer with excellent properties for human sodium iodide symporter (NIS)-based imaging in patients with differentiated thyroid cancer (DTC). The aim of this study was to compare [18F]TFB PET with high-activity posttherapeutic [131I]iodine whole-body scintigraphy and SPECT/CT in recurrent DTC and with [18F]FDG PET/CT in suspected dedifferentiation. Methods: Twenty-six patients treated with high-activity radioactive [131I]iodine therapy (range, 5.00-10.23 GBq) between May 2020 and November 2022 were retrospectively included. Thyroid-stimulating hormone was stimulated by 2 injections of recombinant thyroid-stimulating hormone (0.9 mg) 48 and 24 h before therapy. Before treatment, all patients underwent [18F]TFB PET/CT 40 min after injection of a median of 321 MBq of [18F]TFB. To study tracer kinetics in DTC lesions, 23 patients received an additional scan at 90 min. [131I]iodine therapeutic whole-body scintigraphy and SPECT/CT were performed at a median of 3.8 d after treatment. Twenty-five patients underwent additional [18F]FDG PET. Two experienced nuclear medicine physicians evaluated all imaging modalities in consensus. Results: A total of 62 suspected lesions were identified; of these, 30 lesions were [131I]iodine positive, 32 lesions were [18F]TFB positive, and 52 were [18F]FDG positive. Three of the 30 [131I]iodine-positive lesions were retrospectively rated as false-positive iodide uptake. Tumor-to-background ratio measurements at the 40- and 90-min time points were closely correlated (e.g., for the tumor-to-background ratio for muscle, the Pearson correlation coefficient was 0.91; P < 0.001; n = 49). We found a significant negative correlation between [18F]TFB uptake and [18F]FDG uptake as a potential marker for dedifferentiation (Pearson correlation coefficient, -0.26; P = 0.041; n = 62). Conclusion: Pretherapeutic [18F]TFB PET/CT may help to predict the positivity of recurrent DTC lesions on [131I]iodine scans. Therefore, it may help in the selection of patients for [131I]iodine therapy. Future prospective trials for iodine therapy guidance are warranted. Lesion [18F]TFB uptake seems to be inversely correlated with [18F]FDG uptake and therefore might serve as a dedifferentiation marker in DTC.


Asunto(s)
Adenocarcinoma , Yodo , Neoplasias de la Tiroides , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Tomografía de Emisión de Positrones , Neoplasias de la Tiroides/patología , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Radioisótopos de Yodo/uso terapéutico , Tirotropina , Tiroglobulina
2.
Curr Cancer Drug Targets ; 20(2): 146-155, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32056515

RESUMEN

BACKGROUND: The human sodium iodide symporter (hNIS) has been the most important target in nuclear medicine regarding thyroid-related diseases. Although hNIS-expression can also be determined in extra-thyroidal tumors, imaging hNIS with positron emission tomography has not been exploited clinically. OBJECTIVE: Here, we evaluated the accumulation of the novel hNIS-substrate [18F]tetrafluoroborate ([18F]TFB) in the endogenously hNIS-expressing breast cancer cell line MCF-7 after an improved radiosynthesis and pharmacological stimulation. METHODS: [18F]TFB was prepared under mild reaction conditions (40°C, 25 min) and its uptake properties were investigated in MCF-7 cells pretreated with a combination of all-trans retinoic acid plus methasone-derivatives and compared to the clinically established tracers [131I]iodide and [99mTc]pertechnetate. Specificity of the tracer accumulation was assessed by inhibition experiments using NaBF4, KSO3F, KI and KIO3. RESULTS: [18F]TFB was obtained with a radiochemical yield of 24.0 ± 6.6 % (n = 17) within 40 min after high pressure liquid chromatography-separation and with 26.8 ± 6.2 % (n = 13) within 45 min after adapting the procedure on a synthesis module using higher starting activities (> 10 GBq). After pharmacological treatment, a 4-fold increase in hNIS-expression on the MCF-7 cell surface was achieved, resulting in a significantly higher [18F]TFB uptake into the cells (up to 58-fold) as compared to control experiments. Inhibition studies using various NIS-substrates confirmed the specificity of [18F]TFB for hNIS. CONCLUSION: [18F]TFB was shown to be a promising hNIS-substrate in our model using the human MCF-7 breast cancer cell line mandating in vivo evaluations in xenografted studies and in patients.


Asunto(s)
Boratos/farmacocinética , Radioisótopos de Flúor/farmacocinética , Radiofármacos/farmacocinética , Simportadores/análisis , Boratos/síntesis química , Femenino , Humanos , Células MCF-7 , Simportadores/fisiología , Tretinoina/farmacología
3.
J Nucl Med ; 58(10): 1666-1671, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28385795

RESUMEN

We report the safety, biodistribution, and internal radiation dosimetry, in humans with thyroid cancer, of 18F-tetrafluoroborate (18F-TFB), a novel PET radioligand for imaging the human sodium/iodide symporter (hNIS). Methods: Serial whole-body PET scans of 5 subjects with recently diagnosed thyroid cancer were acquired before surgery for up to 4 h after injection of 184 ± 15 MBq of 18F-TFB. Activity was determined in whole blood, plasma, and urine. Mean organ-absorbed doses and effective doses were calculated via quantitative image analysis and using OLINDA/EXM software. Results: Images showed a high uptake of 18F-TFB in known areas of high hNIS expression (thyroid, salivary glands, and stomach). Excretion was predominantly renal. No adverse effects in relation to safety of the radiopharmaceutical were observed. The effective dose was 0.0326 ± 0.0018 mSv/MBq. The critical tissues/organs receiving the highest mean sex-averaged absorbed doses were the thyroid (0.135 ± 0.079 mSv/MBq), stomach (0.069 ± 0.022 mSv/MBq), and salivary glands (parotids, 0.031 ± 0.011 mSv/MBq; submandibular, 0.061 ± 0.031 mSv/MBq). Other organs of interest were the bladder (0.102 ± 0.046 mSv/MBq) and kidneys (0.029 ± 0.009 mSv/MBq). Conclusion: Imaging using 18F-TFB imparts a radiation exposure similar in magnitude to many other 18F-labeled radiotracers. 18F-TFB shows a biodistribution similar to 99mTc-pertechnetate, a known nonorganified hNIS tracer, and is pharmacologically and radiobiologically safe in humans. Phase 2 trials for 18F-TFB as an hNIS imaging agent are warranted.


Asunto(s)
Boratos/farmacocinética , Ácidos Bóricos/farmacocinética , Regulación Neoplásica de la Expresión Génica , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Seguridad , Simportadores/metabolismo , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/metabolismo , Boratos/efectos adversos , Boratos/metabolismo , Ácidos Bóricos/efectos adversos , Ácidos Bóricos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiometría , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA