Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.794
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(1): 98-111.e21, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608662

RESUMEN

In eukaryotes, DNA replication initiation requires assembly and activation of the minichromosome maintenance (MCM) 2-7 double hexamer (DH) to melt origin DNA strands. However, the mechanism for this initial melting is unknown. Here, we report a 2.59-Å cryo-electron microscopy structure of the human MCM-DH (hMCM-DH), also known as the pre-replication complex. In this structure, the hMCM-DH with a constricted central channel untwists and stretches the DNA strands such that almost a half turn of the bound duplex DNA is distorted with 1 base pair completely separated, generating an initial open structure (IOS) at the hexamer junction. Disturbing the IOS inhibits DH formation and replication initiation. Mapping of hMCM-DH footprints indicates that IOSs are distributed across the genome in large clusters aligning well with initiation zones designed for stochastic origin firing. This work unravels an intrinsic mechanism that couples DH formation with initial DNA melting to license replication initiation in human cells.


Asunto(s)
Replicación del ADN , Humanos , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Origen de Réplica
2.
Cell ; 177(2): 414-427.e13, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951669

RESUMEN

PD-L1 on the surface of tumor cells binds its receptor PD-1 on effector T cells, thereby suppressing their activity. Antibody blockade of PD-L1 can activate an anti-tumor immune response leading to durable remissions in a subset of cancer patients. Here, we describe an alternative mechanism of PD-L1 activity involving its secretion in tumor-derived exosomes. Removal of exosomal PD-L1 inhibits tumor growth, even in models resistant to anti-PD-L1 antibodies. Exosomal PD-L1 from the tumor suppresses T cell activation in the draining lymph node. Systemically introduced exosomal PD-L1 rescues growth of tumors unable to secrete their own. Exposure to exosomal PD-L1-deficient tumor cells suppresses growth of wild-type tumor cells injected at a distant site, simultaneously or months later. Anti-PD-L1 antibodies work additively, not redundantly, with exosomal PD-L1 blockade to suppress tumor growth. Together, these findings show that exosomal PD-L1 represents an unexplored therapeutic target, which could overcome resistance to current antibody approaches.


Asunto(s)
Antígeno B7-H1/metabolismo , Antígeno B7-H1/fisiología , Microambiente Tumoral/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Exosomas/metabolismo , Humanos , Inmunoterapia , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/inmunología , Microambiente Tumoral/fisiología
3.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354704

RESUMEN

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Asunto(s)
Antígenos CD28 , Redes Reguladoras de Genes , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transducción de Señal , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ligando CD27/genética , Ligando CD27/metabolismo , Linfocitos T CD8-positivos
4.
Cell ; 175(1): 186-199.e19, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220457

RESUMEN

Mutations or aberrant upregulation of EZH2 occur frequently in human cancers, yet clinical benefits of EZH2 inhibitor (EZH2i) remain unsatisfactory and limited to certain hematological malignancies. We profile global posttranslational histone modification changes across a large panel of cancer cell lines with various sensitivities to EZH2i. We report here oncogenic transcriptional reprogramming mediated by MLL1's interaction with the p300/CBP complex, which directs H3K27me loss to reciprocal H3K27ac gain and restricts EZH2i response. Concurrent inhibition of H3K27me and H3K27ac results in transcriptional repression and MAPK pathway dependency in cancer subsets. In preclinical models encompassing a broad spectrum of EZH2-aberrant solid tumors, a combination of EZH2 and BRD4 inhibitors, or a triple-combination including MAPK inhibition display robust efficacy with very tolerable toxicity. Our results suggest an attractive precision treatment strategy for EZH2-aberrant tumors on the basis of tumor-intrinsic MLL1 expression and concurrent inhibition of epigenetic crosstalk and feedback MAPK activation.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Animales , Carcinogénesis/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Código de Histonas/efectos de los fármacos , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/fisiología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Factores de Transcripción p300-CBP/fisiología
5.
Cell ; 174(3): 536-548.e21, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961578

RESUMEN

The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.


Asunto(s)
Sordera/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Empalme Alternativo/genética , Animales , Línea Celular , Exones , Regulación de la Expresión Génica/genética , Células HEK293 , Células Ciliadas Auditivas/fisiología , Audición/genética , Audición/fisiología , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas , Empalme del ARN/genética , Proteínas Represoras/fisiología , Factores de Transcripción , Vorinostat/farmacología
6.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38452766

RESUMEN

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Asunto(s)
Empalme Alternativo , Complejo Represivo Polycomb 2 , Animales , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
7.
Mol Cell ; 84(9): 1667-1683.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38599210

RESUMEN

The nucleus is composed of functionally distinct membraneless compartments that undergo phase separation (PS). However, whether different subnuclear compartments are connected remains elusive. We identified a type of nuclear body with PS features composed of BAZ2A that associates with active chromatin. BAZ2A bodies depend on RNA transcription and BAZ2A non-disordered RNA-binding TAM domain. Although BAZ2A and H3K27me3 occupancies anticorrelate in the linear genome, in the nuclear space, BAZ2A bodies contact H3K27me3 bodies. BAZ2A-body disruption promotes BAZ2A invasion into H3K27me3 domains, causing H3K27me3-body loss and gene upregulation. Weak BAZ2A-RNA interactions, such as with nascent transcripts, promote BAZ2A bodies, whereas the strong binder long non-coding RNA (lncRNA) Malat1 impairs them while mediating BAZ2A association to chromatin at nuclear speckles. In addition to unraveling a direct connection between nuclear active and repressive compartments through PS mechanisms, the results also showed that the strength of RNA-protein interactions regulates this process, contributing to nuclear organization and the regulation of chromatin and gene expression.


Asunto(s)
Cromatina , Histonas , ARN Largo no Codificante , Cromatina/metabolismo , Cromatina/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HeLa , Transcripción Genética , ARN/metabolismo , ARN/genética , Animales , Regulación de la Expresión Génica
8.
Mol Cell ; 84(8): 1406-1421.e8, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38490199

RESUMEN

Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.


Asunto(s)
Células Madre Embrionarias de Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Ratones , Animales , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos
9.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38458200

RESUMEN

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Femenino , Ratones , Masculino , Animales , Inactivación del Cromosoma X/genética , Impresión Genómica , Células Germinativas , Epigénesis Genética , Embrión de Mamíferos , ARN Largo no Codificante/genética , Cromosoma X/genética , Mamíferos/genética
10.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851186

RESUMEN

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Histonas , Proteínas de Dominio MADS , Complejo Represivo Polycomb 2 , ARN Polimerasa II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Transcripción Genética , Poliadenilación , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Terminación de la Transcripción Genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
11.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751740

RESUMEN

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Asunto(s)
Osteoclastos , ARN , Humanos , Ratones , Animales , Proteínas Co-Represoras/genética , Osteoclastos/metabolismo , Ligando RANK/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Expresión Génica
12.
Mol Cell ; 83(9): 1393-1411.e7, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37030288

RESUMEN

Polycomb repressive complex 2 (PRC2) mediates H3K27me3 deposition, which is thought to recruit canonical PRC1 (cPRC1) via chromodomain-containing CBX proteins to promote stable repression of developmental genes. PRC2 forms two major subcomplexes, PRC2.1 and PRC2.2, but their specific roles remain unclear. Through genetic knockout (KO) and replacement of PRC2 subcomplex-specific subunits in naïve and primed pluripotent cells, we uncover distinct roles for PRC2.1 and PRC2.2 in mediating the recruitment of different forms of cPRC1. PRC2.1 catalyzes the majority of H3K27me3 at Polycomb target genes and is sufficient to promote recruitment of CBX2/4-cPRC1 but not CBX7-cPRC1. Conversely, while PRC2.2 is poor at catalyzing H3K27me3, we find that its accessory protein JARID2 is essential for recruitment of CBX7-cPRC1 and the consequent 3D chromatin interactions at Polycomb target genes. We therefore define distinct contributions of PRC2.1- and PRC2.2-specific accessory proteins to Polycomb-mediated repression and uncover a new mechanism for cPRC1 recruitment.


Asunto(s)
Histonas , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Cromatina/genética
13.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172591

RESUMEN

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Asunto(s)
Histonas , Proteínas Serina-Treonina Quinasas , Humanos , Histonas/genética , Histonas/metabolismo , Acetilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo , Inflamación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Genes Dev ; 37(13-14): 570-589, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37491148

RESUMEN

Developing neurons undergo a progression of morphological and gene expression changes as they transition from neuronal progenitors to mature neurons. Here we used RNA-seq and H3K4me3 and H3K27me3 ChIP-seq to analyze how chromatin modifications control gene expression in a specific type of CNS neuron: the mouse cerebellar granule cell (GC). We found that in proliferating GC progenitors (GCPs), H3K4me3/H3K27me3 bivalency is common at neuronal genes and undergoes dynamic changes that correlate with gene expression during migration and circuit formation. Expressing a fluorescent sensor for bivalent domains revealed subnuclear bivalent foci in proliferating GCPs. Inhibiting H3K27 methyltransferases EZH1 and EZH2 in vitro and in organotypic cerebellar slices dramatically altered the expression of bivalent genes, induced the down-regulation of migration-related genes and up-regulation of synaptic genes, inhibited glial-guided migration, and accelerated terminal differentiation. Thus, histone bivalency is required to regulate the timing of the progression from progenitor cells to mature neurons.


Asunto(s)
Epigénesis Genética , Histonas , Animales , Ratones , Histonas/metabolismo , Activación Transcripcional , Diferenciación Celular/genética
15.
Mol Cell ; 82(14): 2696-2713.e9, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35716669

RESUMEN

Cancer cells are highly heterogeneous at the transcriptional level and epigenetic state. Methods to study epigenetic heterogeneity are limited in throughput and information obtained per cell. Here, we adapted cytometry by time-of-flight (CyTOF) to analyze a wide panel of histone modifications in primary tumor-derived lines of diffused intrinsic pontine glioma (DIPG). DIPG is a lethal glioma, driven by a histone H3 lysine 27 mutation (H3-K27M). We identified two epigenetically distinct subpopulations in DIPG, reflecting inherent heterogeneity in expression of the mutant histone. These two subpopulations are robust across tumor lines derived from different patients and show differential proliferation capacity and expression of stem cell and differentiation markers. Moreover, we demonstrate the use of these high-dimensional data to elucidate potential interactions between histone modifications and epigenetic alterations during the cell cycle. Our work establishes new concepts for the analysis of epigenetic heterogeneity in cancer that could be applied to diverse biological systems.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/metabolismo , Neoplasias del Tronco Encefálico/patología , Cromatina/genética , Epigénesis Genética , Glioma/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Mutación
16.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35202573

RESUMEN

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Asunto(s)
Cromatina , Proteínas de Drosophila , Islas de CpG , Proteínas de Drosophila/metabolismo , Código de Histonas , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas
17.
Mol Cell ; 82(24): 4611-4626.e7, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36476474

RESUMEN

PALI1 is a newly identified accessory protein of the Polycomb repressive complex 2 (PRC2) that catalyzes H3K27 methylation. However, the roles of PALI1 in cancer are yet to be defined. Here, we report that PALI1 is upregulated in advanced prostate cancer (PCa) and competes with JARID2 for binding to the PRC2 core subunit SUZ12. PALI1 further interacts with the H3K9 methyltransferase G9A, bridging the formation of a unique G9A-PALI1-PRC2 super-complex that occupies a subset of G9A-target genes to mediate dual H3K9/K27 methylation and gene repression. Many of these genes are developmental regulators required for cell differentiation, and their loss in PCa predicts poor prognosis. Accordingly, PALI1 and G9A drive PCa cell proliferation and invasion in vitro and xenograft tumor growth in vivo. Collectively, our study shows that PALI1 harnesses two central epigenetic mechanisms to suppress cellular differentiation and promote tumorigenesis, which can be targeted by dual EZH2 and G9A inhibition.


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 2 , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Epigénesis Genética
18.
Genes Dev ; 36(11-12): 664-683, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35710139

RESUMEN

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.


Asunto(s)
Neoplasias Endometriales , Sarcoma Estromático Endometrial , Sarcoma , Cromatina , Proteínas de Unión al ADN/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Histonas/metabolismo , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Sarcoma/genética , Sarcoma Estromático Endometrial/genética , Sarcoma Estromático Endometrial/metabolismo , Sarcoma Estromático Endometrial/patología , Translocación Genética/genética
19.
Mol Cell ; 81(22): 4736-4746.e5, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34637755

RESUMEN

Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here, we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell-type-specific chromatin architecture. In sum, multi-CUT&Tag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different chromatin proteins.


Asunto(s)
Cromatina/química , ARN Polimerasas Dirigidas por ADN/química , Animales , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Análisis por Conglomerados , Células Madre Embrionarias/citología , Epigénesis Genética , Epigenómica , Epítopos/química , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Código de Histonas , Histonas/química , Ratones , ARN Polimerasa II/metabolismo , Sensibilidad y Especificidad
20.
Mol Cell ; 81(23): 4876-4890.e7, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34739871

RESUMEN

Histone H3.3 lysine-to-methionine substitutions K27M and K36M impair the deposition of opposing chromatin marks, H3K27me3/me2 and H3K36me3/me2. We show that these mutations induce hypotrophic and disorganized eyes in Drosophila eye primordia. Restriction of H3K27me3 spread in H3.3K27M and its redistribution in H3.3K36M result in transcriptional deregulation of PRC2-targeted eye development and of piRNA biogenesis genes, including krimp. Notably, both mutants promote redistribution of H3K36me2 away from repetitive regions into active genes, which associate with retrotransposon de-repression in eye discs. Aberrant expression of krimp represses LINE retrotransposons but does not contribute to the eye phenotype. Depletion of H3K36me2 methyltransferase ash1 in H3.3K27M, and of PRC2 component E(z) in H3.3K36M, restores the expression of eye developmental genes and normal eye growth, showing that redistribution of antagonistic marks contributes to K-to-M pathogenesis. Our results implicate a novel function for H3K36me2 and showcase convergent downstream effects of oncohistones that target opposing epigenetic marks.


Asunto(s)
Cromatina/química , Elementos Transponibles de ADN , Histonas/química , Histonas/genética , Discos Imaginales/metabolismo , Mutación , Animales , Animales Modificados Genéticamente , Centrómero/ultraestructura , Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Metilación de ADN , Drosophila melanogaster , Epigénesis Genética , Humanos , Lisina/química , Metionina/química , Ratones , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Fenotipo , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA