RESUMEN
Background & Aims: Ammonia levels predicted hospitalisation in a recent landmark study not accounting for portal hypertension and systemic inflammation severity. We investigated (i) the prognostic value of venous ammonia levels (outcome cohort) for liver-related outcomes while accounting for these factors and (ii) its correlation with key disease-driving mechanisms (biomarker cohort). Methods: (i) The outcome cohort included 549 clinically stable outpatients with evidence of advanced chronic liver disease. (ii) The partly overlapping biomarker cohort comprised 193 individuals, recruited from the prospective Vienna Cirrhosis Study (VICIS: NCT03267615). Results: (i) In the outcome cohort, ammonia increased across clinical stages as well as hepatic venous pressure gradient and United Network for Organ Sharing model for end-stage liver disease (2016) strata and were independently linked with diabetes. Ammonia was associated with liver-related death, even after multivariable adjustment (adjusted hazard ratio [aHR]: 1.05 [95% CI: 1.00-1.10]; p = 0.044). The recently proposed cut-off (≥1.4 × upper limit of normal) was independently predictive of hepatic decompensation (aHR: 2.08 [95% CI: 1.35-3.22]; p <0.001), non-elective liver-related hospitalisation (aHR: 1.86 [95% CI: 1.17-2.95]; p = 0.008), and - in those with decompensated advanced chronic liver disease - acute-on-chronic liver failure (aHR: 1.71 [95% CI: 1.05-2.80]; p = 0.031). (ii) Besides hepatic venous pressure gradient, venous ammonia was correlated with markers of endothelial dysfunction and liver fibrogenesis/matrix remodelling in the biomarker cohort. Conclusions: Venous ammonia predicts hepatic decompensation, non-elective liver-related hospitalisation, acute-on-chronic liver failure, and liver-related death, independently of established prognostic indicators including C-reactive protein and hepatic venous pressure gradient. Although venous ammonia is linked with several key disease-driving mechanisms, its prognostic value is not explained by associated hepatic dysfunction, systemic inflammation, or portal hypertension severity, suggesting direct toxicity. Impact and implications: A recent landmark study linked ammonia levels (a simple blood test) with hospitalisation/death in individuals with clinically stable cirrhosis. Our study extends the prognostic value of venous ammonia to other important liver-related complications. Although venous ammonia is linked with several key disease-driving mechanisms, they do not fully explain its prognostic value. This supports the concept of direct ammonia toxicity and ammonia-lowering drugs as disease-modifying treatment.
RESUMEN
Background & Aims: Alpha-1 antitrypsin (AAT) deficiency causes/predisposes individuals to advanced chronic liver disease (ACLD). However, the role of the SERPINA1 Pi∗Z allele in patients who have already progressed to ACLD is unclear. Thus, we aimed to evaluate the impact of the Pi∗Z allele on the risk of liver transplantation/liver-related death in patients with ACLD, while adjusting for the severity of liver disease at inclusion. Methods: A total of 1,118 patients with ACLD who underwent hepatic venous pressure gradient (HVPG) measurement and genotyping for the Pi∗Z/Pi∗S allele at the Vienna Hepatic Hemodynamic Lab were included in this retrospective analysis. The outcome of interest was liver transplantation/liver-related death, while non-liver-related death and removal/suppression of the primary etiological factor were considered as competing risks. Results: Viral hepatitis was the most common etiology (44%), followed by alcohol-related (31%) and non-alcoholic fatty liver disease (11%). Forty-two (4%) and forty-six (4%) patients harboured the Pi∗Z and Pi∗S variants, respectively. Pi∗Z carriers had more severe portal hypertension (HVPG: 19±6 vs.15±7 mmHg; p <0.001) and hepatic dysfunction (Child-Turcotte-Pugh: 7.1±1.9 vs. 6.5±1.9 points; p = 0.050) at inclusion, compared to non-carriers. Contrarily, the Pi∗S allele was unrelated to liver disease severity. In competing risk regression analysis, harbouring the Pi∗Z allele was significantly associated with an increased probability of liver transplantation/liver-related death, even after adjusting for liver disease severity at inclusion. The detrimental impact of the common Pi∗MZ genotype (adjusted subdistribution hazard ratio: ≈1.56 vs. Pi∗MM) was confirmed in a fully adjusted subgroup analysis. In contrast, Pi∗S carriers had no increased risk of events. Conclusion: Genotyping for the Pi∗Z allele identifies patients with ACLD at increased risk of adverse liver-related outcomes, thereby improving prognostication. Therapies targeting the accumulation of abnormal AAT should be evaluated as disease-modifying treatments in Pi∗Z allele carriers with ACLD. Lay summary: Alpha-1 antitrypsin deficiency is a genetic disease that affects the lung and the liver. Carrying two dysfunctional copies of the gene causes advanced liver disease. Harbouring one dysfunctional copy increases disease severity in patients with other liver illness. However, the significance of this genetic defect in patients who already suffer from advanced liver disease is unclear. Our study found that harbouring at least one dysfunctional copy of the alpha-1 antitrypsin gene increases the risk of requiring a liver transplantation or dying from a liver disease. This indicates the need for medical therapies aimed at treating the hepatic consequences of this genetic defect.
RESUMEN
BACKGROUND & AIMS: Hepatitis C virus (HCV) eradication with direct-acting antivirals (DAAs) reduces but does not eliminate the risk for hepatocellular carcinoma (HCC). The development of surveillance strategies for HCC after the sustained virologic response (SVR) is therefore warranted. We aimed to evaluate the role of spleen stiffness measurement (SSM) in the prediction of HCC risk in a cohort of patients with advanced chronic liver disease (ACLD) treated with DAAs. METHODS: This is a retrospective cohort study of 140 patients with HCV-related ACLD successfully treated with DAAs in our centre between 2015 and 2017. Patients with available liver stiffness (LSM) and SSM before treatment and 6 months after (SVR24) were included. A Cox regression model investigated the association between SSM and HCC development. RESULTS: During a median follow-up of 41.5 (IQR 32-49) months, 20 patients presented with HCC. SSM at SVR24 predicted HCC development in univariate and adjusted multivariate analysis (hazard ratio: 1.025; 95% CI: 1.001-1.050); the best cut-off was 42 kPa. Patients with LSM-SVR24 ≤10 kPa were at the lowest risk of HCC. In patients with LSM-SVR24 >10 kPa, HCC incidence was not further influenced by LSM values (10-20 kPa vs. >20 kPa), but only by SSM-SVR24 values (≤42 vs. >42 kPa). CONCLUSIONS: Portal hypertension, as evaluated by SSM, plays a significant role in liver carcinogenesis after DAA treatment. We proposed a new algorithm based on post-treatment values of LSM and SSM for the stratification of HCC risk after SVR achievement. LAY SUMMARY: Spleen stiffness predicts the development of hepatocellular carcinoma after viral eradication, especially in patients with post-treatment liver stiffness values >10 kPa. An algorithm based on liver and spleen stiffness can stratify for the risk of liver cancer development and guide the surveillance strategies after treatment with direct-acting antivirals.
RESUMEN
BACKGROUND & AIMS: Liver stiffness is increased in advanced chronic liver disease (ACLD) and accurately predicts prognosis in this population. Recent data suggest that extracellular matrix stiffness per se may modulate the phenotype of liver cells. We aimed at investigating the effect of matrix stiffness on the phenotype of liver cells of rats with cirrhosis, assessing its influence on their response to antifibrotic strategies and evaluating associated molecular mechanisms. METHODS: Hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells were isolated from healthy rats or rats with cirrhosis (carbon tetrachloride or thioacetamide), and cultured on polyacrylamide gels with different physiologically relevant stiffness for 72 h. RESULTS: All cell types of rats with cirrhosis cultured at low stiffness showed a significant phenotype amelioration vs. rigid matrix (assessed by quantitative morphology, mRNA expression, protein synthesis, and electron microscopy imaging). Additionally, stiffness modified the antifibrotic effects of liraglutide in stellate cells of rats with cirrhosis. Finally, evaluation of nuclear morphology revealed that high stiffness induced nuclei deformation in all cell types, an observation confirmed in cells from human livers. Disconnecting the nucleus from the cytoskeleton by cytoskeleton disruption or a defective form of nesprin 1 significantly recovered spherical nuclear shape and quiescent phenotype of cells. CONCLUSIONS: The environment's stiffness per se modulates the phenotype of healthy rats and liver cells of rats with cirrhosis by altering the nuclear morphology through cytoskeleton-derived mechanical forces. The reversibility of this mechanism suggests that targeting the stiffness-mediated intracellular mechanical tensions may represent a novel therapeutic strategy for ACLD. LAY SUMMARY: During cirrhosis, the liver becomes scarred, stiff, and unable to perform its normal functions efficiently. In this study, we demonstrated that cells from diseased (stiff) livers recovered their functionality when placed in a soft environment (as that of a healthy liver). Furthermore, treatments aimed at tricking liver cells into believing they are in a healthy, soft liver improved their function and could potentially contribute to treat cirrhosis.