Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
2.
BMC Genomics ; 22(1): 158, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676394

RESUMEN

BACKGROUND: Maternal hormones, like testosterone, can strongly influence developing offspring, even generating long-term organizational effects on adult behavior; yet, the mechanisms facilitating these effects are still unclear. Here, we experimentally elevated prenatal testosterone in the eggs of zebra finches (Taeniopygia guttata) and measured male aggression in adulthood along with patterns of neural gene expression (RNA-seq) and DNA methylation (MethylC-Seq) in two socially relevant brain regions (hypothalamus and nucleus taenia of the amygdala). We used enrichment analyses and protein-protein interaction networks to find candidate processes and hub genes potentially affected by the treatment. We additionally identified differentially expressed genes that contained differentially methylated regions. RESULTS: We found that males from testosterone-injected eggs displayed more aggressive behaviors compared to males from control eggs. Hundreds of genes were differentially expressed, particularly in the hypothalamus, including potential aggression-related hub genes (e.g., brain derived neurotrophic factor). There were also enriched processes with well-established links to aggressive phenotypes (e.g., somatostatin and glutamate signaling). Furthermore, several highly connected genes identified in protein-protein interaction networks also showed differential methylation, including adenylate cyclase 2 and proprotein convertase 2. CONCLUSIONS: These results highlight genes and processes that may play an important role in mediating the effects of prenatal testosterone on long-term phenotypic outcomes, thereby providing insights into the molecular mechanisms that facilitate hormone-mediated maternal effects.


Asunto(s)
Pinzones , Testosterona , Agresión , Animales , Pinzones/genética , Hipotálamo , Masculino , Vitaminas
3.
CNS Neurosci Ther ; 30(7): e14880, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073001

RESUMEN

Adenylyl cyclases (Adcys) catalyze the formation of cAMP, a secondary messenger essential for cell survival and neurotransmission pathways in the CNS. Adcy2, one of ten Adcy isoforms, is highly expressed in the CNS. Abnormal Adcy2 expression and mutations have been reported in various neurological disorders in both rodents and humans. However, due to the lack of genetic tools, loss-of-function studies of Adcy2 are scarce. In this review, we summarize recent findings on Adcy2 expression and function in neurological diseases. Specifically, we first introduce the biochemistry, structure, and function of Adcy2 briefly. Next, the expression and association of Adcy2 in human patients and rodent models of neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), psychiatric disorders (Tourette syndrome, schizophrenia, and bipolar disorder), and other neurological conditions (stress-associated disorders, stroke, epilepsy, and Lesch-Nyhan Syndrome) are elaborated. Furthermore, we discuss the pros and cons of current studies as well as key questions that need to be answered in the future. We hope to provide a focused review on Adcy2 that promotes future research in the field.


Asunto(s)
Adenilil Ciclasas , Enfermedades del Sistema Nervioso , Humanos , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Animales , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/metabolismo
4.
Mol Metab ; 74: 101757, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348738

RESUMEN

OBJECTIVE: Free fatty acid receptor 1 (FFAR1) is highly expressed in enteroendocrine cells of the small intestine and pancreatic beta cells, where FFAR1 agonists function as GLP-1 and insulin secretagogues, respectively. Most efficacious are so-called second-generation synthetic agonists such as AM5262, which, in contrast to endogenous long-chain fatty acids are able to signal through both IP3/Ca2+ and cAMP pathways. Whereas IP3 signaling is to be expected for the mainly Gq-coupled FFAR1, the mechanism behind FFAR1-induced cAMP accumulation remains unclear, although originally proposed to be Gs mediated. METHODS AND RESULTS: When stimulated with AM5262, we observe that FFAR1 can activate the majority of the Gα proteins, except - surprisingly - members of the Gs family. AM5262-induced FFAR1-mediated transcriptional activation through cAMP response element (CREB) was blocked by the specific Gq inhibitor, YM253890. Furthermore, in Gq-deficient cells no CREB signal was observed unless Gq or G11 was reintroduced by transfection. By qPCR we determined that adenylate cyclase 2 (Adcy2) was highly expressed and enriched relative to the nine other Adcys in pro-glucagon expressing enteroendocrine cells. Co-transfection with ADCY2 increased the FFAR1-induced cAMP response 4-5-fold in WT HEK293 cells, an effect fully inhibited by YM253890. Moreover, co-transfection with ADCY2 had no effect in Gq-deficient cells without reintroduction of either Gq or G11. Importantly, although both AM5262/FFAR1 and isoproterenol/ß2 adrenergic receptor (ß2AR) induced cAMP production was lost in Gs-deficient cells, only the ß2AR response was rescued by Gs transfection, whereas co-transfection with ADCY2 was required to rescue the FFAR1 cAMP response. In situ hybridization demonstrated a high degree of co-expression of ADCY2 and FFAR1 in enteroendocrine cells throughout the intestine. Finally, in the enteroendocrine STC-1 and GLUTag cell lines AM5262-induced cAMP accumulation and GLP-1 secretion were both blocked by YM253890. CONCLUSIONS: Our results show that Gq signaling is responsible not only for the IP3/Ca2+ but also the cAMP response, which together are required for the highly efficacious hormone secretion induced by second-generation FFAR1 agonists - and that ADCY2 presumably mediates the Gq-driven cAMP response.


Asunto(s)
Adenilil Ciclasas , Ácidos Grasos no Esterificados , Humanos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Péptido 1 Similar al Glucagón/metabolismo
5.
Front Oncol ; 12: 1025195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313639

RESUMEN

Background: The incidence and mortality of bladder cancer (BCa) are increasing, while the existing diagnostic methods have limitations. Therefore, for early detection and response prediction, it is crucial to improve the prognosis and treatment strategies. However, with existing diagnostic methods, detecting BCa in the early stage is challenging. Hence, novel biomarkers are urgently needed to improve early diagnosis and treatment efficiency. Methods: The gene expression profile and gene methylation profile dataset were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), differentially methylated genes (DMGs), and methylation-regulated differentially expressed genes (MeDEGs) were gradually identified. A cancer genome map was obtained using online gene expression profile interaction analysis, and survival implications were produced using Kaplan-Meier survival analysis. GSEA was employed to predict the marker pathways where DEGs were significantly involved. The study used bisulfite PCR amplification combined with bisulfite amplicon sequencing (BSAS) to screen for methylation analysis of multiple candidate regions of the adenylate cyclase 2 (ADCY2) based on the sequence design of specific gene regions and CpG islands. Results: In this study, DEGs and DMGs with significantly up- or down-regulated expression were selected. The intersection method was used to screen the MeDEGs. The interaction network group in STRING was then visualized using Cytoscape, and the PPI network was constructed to identify the key genes. The key genes were then analyzed using functional enrichment. To compare the relationship between key genes and the prognosis of BCa patients, we further investigated ADCY2 and found that ADCY2 can be a potential clinical biomarker in BCa prognosis and immunotherapy response prediction. In human BCa 5637 and MGH1 cells, we developed and verified the effectiveness of ADCY2 primers using BSAS technology. The findings revealed that the expression of ADCY2 is highly regulated by the methylation of the promoter regions. Conclusion: This study revealed that increased expression of ADCY2 was significantly correlated with increased tumor heterogeneity, predicting worse survival and immunotherapy response in BCa patients.

6.
Int J Stem Cells ; 13(1): 55-64, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32114743

RESUMEN

BACKGROUND AND OBJECTIVES: The maternal-fetal interface is an important source of mesenchymal stem cells (MSCs), and it is influenced by high levels of estradiol (E2) during pregnancy. It is highly important to study the role of E2 in MSCs for both clinical application and understanding of the mechanisms underlying pregnancy related diseases. METHODS AND RESULTS: In this study, differently expressed genes (DEGs) were found in the MSCs after exposure to E2. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs was performed and the integrated regulatory network of DEGs-miRNA was constructed. A total of 390 DEGs were found in the MSCs exposed to E2, including 164 upregulated DEGs (e.g. ADCY2, VEGFA and PPY) and 226 downregulated DEGs (e.g. KNG1, AGT and NPY). Additionally, 10 miRNAs (such as miR-148A/B, miR-152, miR-182) identified the integrated regulatory network of DEGs-miRNAs. Among them, the expression of ADCY2 was significantly upregulated, and this was associated with multiple changed genes. We confirmed that the expression of ADCY2 is significantly promoted by E2 and subsequently promoted the production of cAMP in MSCs. We also found that E2 promoted ADCY2 expression by inhibiting miR-152 and miR-148a. CONCLUSIONS: E2 promotes the expression of cAMP through miR-148a/152-ADCY2 in MSCs. It is suggested that E2 plays a key role in the growth and function of MSCs.

7.
Asian J Psychiatr ; 52: 102150, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32447269

RESUMEN

The pathogenesis of the Bipolar Disorder(BPD) is still unclear. Some studies suggest that abnormal signal transduction in specific pathways may play an important role in the pathogenesis of BPD (Sui et al., 2015). Adenylate cyclase (ADCY) is an essential component of the adenylate signaling pathway. Previous studies have shown that some SNPs within the adenylate cyclase gene could affect the therapeutic response to mood stabilizers and antidepressants. Moreover, in 2014, one whole-genome study suggested that the ADCY-2 gene may be associated with BPD (Mühleisen et al., 2014). This study aims to investigate the association between ADCY-2 gene polymorphism and BPD in Chinese Han population.


Asunto(s)
Adenilil Ciclasas , Trastorno Bipolar , Adenilil Ciclasas/genética , Antimaníacos , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA