Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Nanobiotechnology ; 20(1): 449, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242003

RESUMEN

In the frame of radiotherapy treatment of cancer, radioresistance remains a major issue that still needs solutions to be overcome. To effectively improve the radiosensitivity of tumors and reduce the damage of radiation to neighboring normal tissues, radiosensitizers have been given increasing attention in recent years. As nanoparticles based on the metal element gadolinium, AGuIX nanoparticles have been shown to increase the radiosensitivity of cancers. Although it is a rare nanomaterial that has entered preclinical trials, the unclear biological mechanism hinders its further clinical application. In this study, we demonstrated the effectiveness of AGuIX nanoparticles in the radiosensitization of triple-negative breast cancer. We found that AGuIX nanoparticles increased the level of DNA damage by compromising the homologous recombination repair pathway instead of the non-homologous end joining pathway. Moreover, the results showed that AGuIX nanoparticles induced apoptosis, but the degree of apoptosis ability was very low, which cannot fully explain their strong radiosensitizing effect. Ferroptosis, the other mode of cell death, was also discovered to play a significant role in radiation sensitization, and AGuIX nanoparticles may regulate the anti-ferroptosis system by inhibiting the NRF2-GSH-GPX4 signaling pathway.


Asunto(s)
Nanopartículas , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Gadolinio , Humanos , Factor 2 Relacionado con NF-E2 , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Radiación Ionizante , Transducción de Señal
2.
J Nanobiotechnology ; 18(1): 129, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912214

RESUMEN

Liquid deposit mimicking surface aerosolization in the airway is a promising strategy for targeting bronchopulmonary tumors with reduced doses of nanoparticle (NPs). In mimicking and studying such delivery approaches, the use of human in vitro 3D culture models can bridge the gap between 2D cell culture and small animal investigations. Here, we exposed airway epithelia to liquid-apical gadolinium-based AGuIX® NPs in order to determine their safety profile. We used a multiparametric methodology to investigate the NP's distribution over time in both healthy and tumor-bearing 3D models. AGuIX® NPs were able to target tumor cells in the absence of specific surface functionalization, without evidence of toxicity. Finally, we validated the therapeutic potential of this hybrid theranostic AGuIX® NPs upon radiation exposure in this model. In conclusion, 3D cell cultures can efficiently mimic the normal and tumor-bearing airway epitheliums, providing an ethical and accessible model for the investigation of nebulized NPs.


Asunto(s)
Epitelio/efectos de los fármacos , Gadolinio/uso terapéutico , Nanopartículas/uso terapéutico , Sistema Respiratorio/efectos de los fármacos , Células A549/patología , Animales , Técnicas de Cultivo de Célula , Ciclo Celular , Proliferación Celular , Sistemas de Liberación de Medicamentos/métodos , Gadolinio/química , Humanos , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química
3.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39204138

RESUMEN

Photodynamic therapy is an accepted therapy cancer treatment. Its advantages encourage researchers to delve deeper. The use of nanoparticles in PDT has several advantages including the passive targeting of cancer cells. The aim of this article is to evaluate the effectiveness of AGuIX nanoparticles (activation and guiding of irradiation by X-ray) in the presence or absence of a photosensitizer, Photofrin, under illumination of 630 nm or under X-ray irradiation. The goal is to improve local tumor control by combining PDT with low-dose-X-ray-activated NPs in the treatment of locally advanced metastatic lung cancer. The study of the energy transfer, which occurs after excitation of Gd/Tb chelated in AGuIX in the presence of Photofrin, was carried out. We could observe the formation of singlet oxygen after the light or X-ray excitation of Gd and Tb that was not observed for AGuIX or Photofrin alone, proving that it is possible to realize energy transfer between both compounds.

4.
Pharmaceutics ; 15(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36986856

RESUMEN

Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight a relationship between NRP-1 and M2 macrophage infiltration. In order to induce a photodynamic effect, multifunctional AGuIX®-design nanoparticles were used in combination with a magnetic resonance imaging (MRI) contrast agent, as well as a porphyrin as the photosensitizer molecule and KDKPPR peptide ligand for targeting the NRP-1 receptor. The main objective of this study was to characterize the impact of macrophage NRP-1 protein expression on the uptake of functionalized AGuIX®-design nanoparticles in vitro and to describe the influence of GBM cell secretome post-PDT on the polarization of macrophages into M1 or M2 phenotypes. By using THP-1 human monocytes, successful polarization into the macrophage phenotypes was argued via specific morphological traits, discriminant nucleocytoplasmic ratio values, and different adhesion abilities based on real-time cell impedance measurements. In addition, macrophage polarization was confirmed via the transcript-level expression of TNFα, CXCL10, CD-80, CD-163, CD-206, and CCL22 markers. In relation to NRP-1 protein over-expression, we demonstrated a three-fold increase in functionalized nanoparticle uptake for the M2 macrophages compared to the M1 phenotype. The secretome of the post-PDT GBM cells led to nearly a three-fold increase in the over-expression of TNFα transcripts, confirming the polarization to the M1 phenotype. The in vivo relationship between post-PDT efficiency and the inflammatory effects points to the extensive involvement of macrophages in the tumor zone.

5.
Food Chem Toxicol ; 149: 112004, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33482259

RESUMEN

Gadolinium-based radiosensitizing AGuIX nanoparticles (AGuIX) currently tested two phase 2 clinical trials in association with radiotherapy for the treatment of brain metastases. Here, excitatory/inhibitory neurotransmission was assessed in rat cortex nerve terminals in the presence of AGuIX and their constituents (DOTAGA and DOTAGA/Gd3+) at concentrations used for medical treatment, and those 5-24 times higher. The ambient level, transporter-mediated, tonic and exocytotic release of L-[14C]glutamate and [3H]GABA, the membrane potential of nerve terminals were not changed in the presence of AGuIX at concentrations used for medical treatment ([Gd3+] = 0.25 mM, corresponding to 0.25 g.L-1), and DOTAGA (0.25 mM) and DOTAGA/Gd3+ (0.25 mM/0.01 mM). Difference between AGuIX and the precursors was uncovered, when their concentrations were increased. AGuIX (1.25-6 mM) did not change any transport characteristics of L-[14C]glutamate and [3H]GABA, whereas, DOTAGA (1.25-6 mM) affected the membrane potential, ambient level, and exocytotic release of L-[14C]glutamate and [3H]GABA. Gd3+ did not mask, but even enhanced above effects of DOTAGA. Therefore, AGuIX did not influence glutamate- and GABA-ergic neurotransmission at the presynaptic site. In contrast, DOTAGA and mixture DOTAGA/Gd3+ significantly affected synaptic neurotransmission at high concentrations. AGuIX own structure that overcomes neurotoxic features of their constituents.


Asunto(s)
Neoplasias Encefálicas/secundario , Corteza Cerebral/metabolismo , Gadolinio/farmacología , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Corteza Cerebral/patología , Relación Dosis-Respuesta a Droga , Exocitosis , Gadolinio/administración & dosificación , Masculino , Nanopartículas/administración & dosificación , Fármacos Sensibilizantes a Radiaciones , Ratas , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
6.
ACS Appl Mater Interfaces ; 12(51): 56874-56885, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33326207

RESUMEN

Radiotherapy is the main treatment for cancer patients. A major concern in radiotherapy is the radiation resistance of some tumors, such as human nonsmall cell lung cancer. However, the radiation dose delivered to the tumors is often limited by the possibility of collateral damage to surrounding healthy tissues. A new and efficient gadolinium-based nanoparticle, AGuIX, has recently been developed for magnetic resonance imaging-guided radiotherapy and has been proven to act as an efficient radiosensitizer. The amplified radiation effects of AGuIX nanoparticles appear to be due to the emission of low-energy photoelectrons and Auger electron interactions. We demonstrated that AGuIX nanoparticles exacerbated radiation-induced DNA double-strand break damage and reduced DNA repair in the H1299 nonsmall cell lung cancer cell line. Furthermore, we observed a significant improvement in tumor cell damage and growth suppression, under radiation therapy, with the AGuIX nanoparticles in a H1299 mouse xenograft model. This study paves the way for research into the radiosensitization mechanism of AGuIX nanoparticles and provides a scientific basis for the use of AGuIX nanoparticles as radiosensitizing drugs.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas del Metal/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Gadolinio/química , Gadolinio/efectos de la radiación , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Ratones Desnudos , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nanomedicine (Lond) ; 12(13): 1561-1574, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28621567

RESUMEN

AIM: The aim of this study was to develop a dual-modality positron emission tomography/magnetic resonance (PET/MR) imaging probe by radiolabeling gadolinium-containing AGuIX derivatives with the positron-emitter Gallium-68 (68Ga). MATERIALS & METHODS: AGuIX@NODAGA nanoparticles were labeled with 68Ga at high efficiency. Tumor accumulation in an appropriate disease model was assessed by ex vivo biodistribution and in vivo PET/MR imaging. RESULTS:  68Ga-AGuIX@NODAGA was proven to passively accumulate in U87MG human glioblastoma tumor xenografts. Metabolite assessment in serum, urine and tumor samples showed that 68Ga-AGuIX@NODAGA remains unmetabolized up to at least 60 min postinjection. CONCLUSION: This study demonstrates that 68Ga-AGuIX@NODAGA can be used as a dual-modality PET/MR imaging agent with passive accumulation in the diseased area, thus showing great potential for PET/MR image-guided radiation therapy.


Asunto(s)
Acetatos/química , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Medios de Contraste/química , Complejos de Coordinación/química , Radioisótopos de Galio/química , Glioblastoma/diagnóstico por imagen , Compuestos Heterocíclicos con 1 Anillo/química , Nanopartículas/química , Siloxanos/química , Animales , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/radioterapia , Cromatografía Líquida de Alta Presión , Femenino , Radioisótopos de Galio/sangre , Radioisótopos de Galio/orina , Glioblastoma/radioterapia , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Ratones SCID , Tomografía de Emisión de Positrones/métodos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA