Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Noncoding RNA Res ; 3(4): 213-225, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30809600

RESUMEN

Gemcitabine and pemetrexed are clinically approved antimetabolites for the therapy of mesothelioma diseases. These drugs are often applied in combination with platinum complexes and other drugs. The activity of antimetabolites depended on the expression levels of certain non-coding RNAs, in particular, of small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The development of tumor resistance towards antimetabolites was regulated by non-coding RNAs. An overview of the interplay between gemcitabine/pemetrexed antimetabolites and non-coding RNAs in mesothelioma is provided. Further to this, various non-coding RNA-modulating agents are discussed which displayed positive effects on gemcitabine or pemetrexed treatment of mesothelioma diseases. A detailed knowledge of the connections of non-coding RNAs with antimetabolites will be constructive for the design of improved therapies in future.

2.
Noncoding RNA Res ; 3(4): 161-173, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30809599

RESUMEN

Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.

3.
Noncoding RNA Res ; 1(1): 12-34, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30159408

RESUMEN

The epigenetic regulation of cancer cells by small non-coding RNA molecules, the microRNAs (miRNAs), has raised particular interest in the field of oncology. These miRNAs play crucial roles concerning pathogenic properties of cancer cells and the sensitivity of cancer cells towards anticancer drugs. Certain miRNAs are responsible for an enhanced activity of drugs, while others lead to the formation of tumor resistance. In addition, miRNAs regulate survival and proliferation of cancer cells, in particular of cancer stem-like cells (CSCs), that are especially drug-resistant and, thus, cause tumor relapse in many cases. Various small molecule compounds were discovered that target miRNAs that are known to modulate tumor aggressiveness and drug resistance. This review comprises the effects of naturally occurring small molecules (phenolic compounds and terpenoids) on miRNAs involved in cancer diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA