RESUMEN
The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.
RESUMEN
The Activin A Receptor type I (ALK2) is a critical component of BMP-SMAD signaling that, in the presence of ligands, phosphorylates cytosolic SMAD1/5/8 and modulates important biological processes, including bone formation and iron metabolism. In hepatocytes, the BMP-SMAD pathway controls the expression of hepcidin, the liver peptide hormone that regulates body iron homeostasis via the BMP receptors ALK2 and ALK3, and the hemochromatosis proteins. The main negative regulator of the pathway in the liver is transmembrane serine protease 6 (TMPRSS6), which downregulates hepcidin by cleaving the BMP coreceptor hemojuvelin. ALK2 function is inhibited also by the immunophilin FKBP12, which maintains the receptor in an inactive conformation. FKBP12 sequestration by tacrolimus or its silencing upregulates hepcidin in primary hepatocytes and in vivo in acute but not chronic settings. Interestingly, gain-of-function mutations in ALK2 that impair FKBP12 binding to the receptor and activate the pathway cause a bone phenotype in patients affected by Fibrodysplasia Ossificans Progressiva but not hepcidin and iron metabolism dysfunction. This observation suggests that additional mechanisms are active in the liver to compensate for the increased BMP-SMAD signaling. Here we demonstrate that Fkbp12 downregulation in hepatocytes by antisense oligonucleotide treatment upregulates the expression of the main hepcidin inhibitor Tmprss6, thus counteracting the ALK2-mediated activation of the pathway. Combined downregulation of both Fkbp12 and Tmprss6 blocks this compensatory mechanism. Our findings reveal a previously unrecognized functional cross talk between FKBP12 and TMPRSS6, the main BMP-SMAD pathway inhibitors, in the control of hepcidin transcription.NEW & NOTEWORTHY This study uncovers a previously unrecognized mechanism of hepcidin and BMP-SMAD pathway regulation in hepatocytes mediated by the immunophilin FKBP12 and the transmembrane serine protease TMPRSS6.
Asunto(s)
Hepcidinas , Proteína 1A de Unión a Tacrolimus , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/genética , Serina , Serina Endopeptidasas/genética , Serina Proteasas , Proteína 1A de Unión a Tacrolimus/genéticaRESUMEN
Ebstein's anomaly is a congenital malformation of the tricuspid valve characterized by abnormal attachment of the valve leaflets, resulting in varying degrees of valve dysfunction. The anatomic hallmarks of this entity are the downward displacement of the attachment of the septal and posterior leaflets of the tricuspid valve. Additional intracardiac malformations are common. From an embryological point of view, the cavity of the future right atrium does not have a direct orifice connected to the developing right ventricle. This chapter provides an overview of current insight into how this connection is formed and how malformations of the tricuspid valve arise from dysregulation of molecular and morphological events involved in this process. Furthermore, mouse models that show features of Ebstein's anomaly and the naturally occurring model of canine tricuspid valve malformation are described and compared to the human model. Although Ebstein's anomaly remains one of the least understood cardiac malformations to date, the studies summarized here provide, in aggregate, evidence for monogenic and oligogenic factors driving pathogenesis.
Asunto(s)
Modelos Animales de Enfermedad , Anomalía de Ebstein , Válvula Tricúspide , Anomalía de Ebstein/genética , Anomalía de Ebstein/patología , Anomalía de Ebstein/fisiopatología , Animales , Humanos , Perros , Ratones , Válvula Tricúspide/anomalías , Válvula Tricúspide/patologíaRESUMEN
PURPOSE: To evaluate whether PTX3 is differentially expressed in the granulosa lutein cells derived from women with PCOS and whether BMP6 can regulate the expression of PTX3 in hGL cells. METHODS: The expression levels of BMP6 and PTX3 in granulosa lutein cells were evaluated by RT-qPCR. The correlation between the expression levels of BMP6 /PTX3 and oocyte quality indexes were analyzed using clinical samples. The cells were incubated with BMP6 at different concentrations and times to check the expression of PTX3 in KGN cells. TGF-ß type I inhibitors and small interfering RNA targeting ALK2/3/6,SMAD1/5/8 and SMAD4 were used to study the involvement of SMAD dependent pathways in KGN cells. RESULTS: The levels of BMP6 in hGL cells were negatively correlated with the corresponding oocyte maturation rate and high-quality embryo rate, whereas the levels of PTX3 were positively correlated with the corresponding oocyte maturation rate in PCOS. Additionally, the in vitro cell cultured results showed BMP6 significantly inhibited the expression of PTX3 in KGN cells. Furthermore, using a dual inhibition approach (kinase inhibitors and small interfering RNAs), we identified the ALK2/ALK3 type I receptors and BMPR2/ACVR2A type II receptors and the downstream SMAD1/SMAD5-SMAD4 signaling pathway were responsible for the BMP6-induced cellular activities in KGN cells. CONCLUSIONS: The suppressive effect of BMP6 on PTX3 was mediated by ALK2/ALK3 type I receptors and BMPR2/ACVR2A type II receptors in granulosa cells through the SMAD1/5-SMAD4 dependent signaling pathway in PCOS.Our findings provides new insights into the understanding of the pathogenesis of PCOS-related ovulatory disorders.
Asunto(s)
Proteína C-Reactiva , Células Lúteas , Síndrome del Ovario Poliquístico , Componente Amiloide P Sérico , Femenino , Humanos , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Proteína Morfogenética Ósea 6/farmacología , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Regulación hacia Abajo/genética , Células de la Granulosa/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismoRESUMEN
Bone morphogenetic proteins (BMPs) are required for craniofacial bone development. However, it remains elusive how BMP signaling regulates craniofacial cartilage development. To address this question, we utilized a genetic system to enhance BMP signaling via one of BMP type I receptors ALK2 in a chondrocyte-specific manner (hereafter Ca-Alk2:Col2-Cre) in mice. Ca-Alk2:Col2-Cre mice died shortly after birth due to severe craniofacial abnormalities including cleft palate, defective tongue, and shorter mandible formation. Histological analysis revealed that these phenotypes were attributed to the extensive chondrogenesis. Compared with controls, enhanced SOX9 and RUNX2 production were observed in nasal cartilage of Ca-Alk2:Col2-Cre mice. To reveal the mechanisms responsible for enlarged nasal cartilage, we examined Smad-dependent and Smad-independent BMP signaling pathways. While the Smad-independent BMP signaling pathway including p38, ERK, and JNK remained silent, the Smad1/5/9 was highly phosphorylated in Ca-Alk2:Col2-Cre mice. Interestingly, Ca-Alk2:Col2-Cre mice showed enhanced S6 kinase phosphorylation, a readout of mammalian target of rapamycin complex 1 (mTORC1). These findings may suggest that enhanced Smad-dependent BMP signaling positively regulates the mTOR pathway and stimulates chondrocytes toward hypertrophic differentiation, thereby leading to enlarged nasal cartilage formation in mice.
Asunto(s)
Fisura del Paladar , Cartílagos Nasales , Animales , Ratones , Condrogénesis , Nariz , Transducción de Señal , MamíferosRESUMEN
Accumulated studies have suggested that bone morphogenetic proteins (BMPs) are critical for skin development. However, it remains elusive how BMP signaling via ALK2 (aka ACVR1), one of the important BMP type I receptors, regulates keratinocyte differentiation. To address this question, we utilized a genetic system that enhances BMP signaling via ALK2 in an epidermis-specific manner in mice (hereafter ca-Alk2:K14-Cre). Ca-Alk2:K14-Cre mice displayed a sticky and hairless skin phenotype with a thinner epidermis incapable of differentiating. Although cellular proliferation and survival were comparable between wild-type and ca-Alk2:K14-Cre mice, skin differentiation was severely hampered in ca-Alk2:K14-Cre mice. To uncover the mechanism of altered keratinocyte differentiation, we performed a transcriptome analysis. As a result, we found that the expression levels of cell cycle inhibitor p21 were increased in ca-Alk2:K14-Cre mice. Our findings suggest that aberrant BMP signaling via ALK2 positively regulates p21 expression that attenuates keratinocyte differentiation, and further highlights the critical role of BMP signaling in skin development.
Asunto(s)
Receptores de Activinas Tipo I , Proteínas Morfogenéticas Óseas , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Queratinocitos/metabolismo , Ratones , Transducción de Señal/genéticaRESUMEN
Bone Morphogenetic Protein (BMP) signaling regulates diverse biological processes. Upon ligand binding, BMP receptors (BMPRs) phosphorylate SMAD1/5 and other noncanonical downstream effectors to induce transcription of downstream targets. However, the precise role of individual BMP receptors in this process remains largely unknown due to the complexity of downstream signaling and the innate promiscuity of ligand-receptor interaction. To delineate unique downstream effectors of individual BMPR1s, we analyzed the transcriptome of human umbilical endothelial cells (HUVECs) expressing three distinct constitutively active BMPR1s of which expression was detected in endothelial cells (ECs). From our analyses, we identified a number of novel downstream targets of BMPR1s in ECs. More importantly, we found that each BMPR1 possesses a distinctive set of downstream effectors, suggesting that each BMPR1 is likely to retain unique function in ECs. Taken together, our analyses suggest that each BMPR1 regulates downstream targets non-redundantly in ECs to create context-dependent outcomes of the BMP signaling.
Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/fisiología , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores de Activinas Tipo I/genética , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Smad1/fisiología , Proteína Smad5/fisiologíaRESUMEN
Genetic variants are vital in informing clinical phenotypes, aiding physical diagnosis, guiding genetic counseling, understanding the molecular basis of disease, and potentially stimulating drug development. Here we describe two families with an ultrarare ACVR1 gain-of-function pathogenic variant (codon 375, Arginine > Proline; ACVR1R375P ) responsible for a mild nonclassic fibrodysplasia ossificans progressiva (FOP) phenotype. Both families include people with the ultrarare ACVR1R375P variant who exhibit features of FOP while other individuals currently do not express any clinical signs of FOP. Thus, the mild ACVR1R375P variant greatly expands the scope and understanding of this rare disorder.
Asunto(s)
Miositis Osificante , Receptores de Activinas Tipo I/genética , Humanos , Mutación , Miositis Osificante/diagnóstico , Miositis Osificante/genética , Miositis Osificante/patología , FenotipoRESUMEN
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease caused by heterozygous missense mutations in Activin A receptor type I which is also known as Activin-like kinase 2 (ALK2), a type I receptor of Bone Morphogenetic Proteins(BMP). Patients with FOP usually undergo episodic flare-ups and the heterotopic ossification in soft and connective tissues. Molecular mechanism study indicates that Activin A, the ligand which normally transduces Transforming Growth Factor Beta signaling, abnormally activates BMP signaling through ALK2 mutants in FOP, leading to heterotopic bone formation. To date, effective therapies to FOP are unavailable. However, significant advances have recently been made in the development of FOP drugs. In this article, we review the recent advances in understanding the FOP mechanism and drug development, with a focus on the small-molecular and antibody drugs currently in the clinical trials for FOP treatment.
Asunto(s)
Miositis Osificante , Osificación Heterotópica , Activinas/genética , Activinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Desarrollo de Medicamentos , Humanos , Ligandos , Mutación , Miositis Osificante/tratamiento farmacológico , Miositis Osificante/genética , Miositis Osificante/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Factor de Crecimiento Transformador beta/genéticaRESUMEN
Activin receptor-like kinase 2 (ALK2) has been implicated as a key target in multiple rare diseases. Herein, we describe the design of a novel bicyclic lactam series of potent and selective ALK2 inhibitors. This manuscript details an improvement in potency of two orders of magnitude from the initial bicyclic structure as well as a two-fold improvement in cellular potency from the original monocyclic inhibitor. Furthermore, we provide a detailed strategy for progressing this project in the future.
Asunto(s)
Receptores de Activinas Tipo I/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , beta-Lactamas/farmacología , Receptores de Activinas Tipo I/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , beta-Lactamas/síntesis química , beta-Lactamas/químicaRESUMEN
Inhibition of mutant activin A type-1 receptor ACVR1 (ALK2) signaling by small-molecule drugs is a promising therapeutic approach to treat fibrodysplasia ossificans progressiva (FOP), an ultra-rare disease leading to progressive soft tissue heterotopic ossification with no curative treatment available to date. Here, we describe the synthesis and in vitro characterization of a novel series of 2-aminopyrazine-3-carboxamides that led to the discovery of Compound 23 showing excellent biochemical and cellular potency, selectivity over other BMP and TGFß signaling receptor kinases, and a favorable in vitro ADME profile.
Asunto(s)
Miositis Osificante , Osificación Heterotópica , Receptores de Activinas Tipo I , Humanos , Miositis Osificante/tratamiento farmacológico , Pirazinas/farmacología , Pirazinas/uso terapéutico , Transducción de SeñalRESUMEN
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Asunto(s)
Osificación Heterotópica , Proteínas Morfogenéticas Óseas/metabolismo , Humanos , Osificación Heterotópica/etiología , Osificación Heterotópica/genética , Osteogénesis , Receptores de Ácido Retinoico , Transducción de SeñalRESUMEN
Mutant activin receptor-like kinase-2 (ALK2) is associated with the pathogenesis of fibrodysplasia ossificans progressiva, making it an attractive target for therapeutic intervention. We synthesized a new series of bicyclic pyrazoles and evaluated their mutant ALK2 enzyme inhibitory activities, leading to the identification of 8 as the most potent inhibitor. This compound showed moderate microsomal metabolic stability and human ether-a-go-go related gene (hERG) safety. In C2C12 cells carrying mutant ALK2 (R206H), 8 efficiently inhibited the bone morphogenetic protein (BMP)-induced alkaline phosphatase activity.
Asunto(s)
Receptores de Activinas Tipo I/antagonistas & inhibidores , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Miositis Osificante/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Mutación , Miositis Osificante/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-ActividadRESUMEN
PURPOSE OF REVIEW: Fibrodysplasia ossificans progressiva (FOP) is a debilitating rare disease known for episodic endochondral heterotopic ossification (HO) caused by gain-of-function mutations in ACVR1/ALK2. However, disease severity varies among patients with identical mutations suggesting disease-modifying factors, including diet, may have therapeutic implications. The roles of vitamin D3 in calcium metabolism and chondrogenesis are known, but its effects on BMP signaling and chondrogenesis are less studied. This review attempts to assess the possibility of vitamin D's effects in FOP by exploring relevant intersections of VD3 with mechanisms of FOP flares. RECENT FINDINGS: In vitro and in vivo studies suggest vitamin D suppresses inflammation, while clinical studies suggest that vitamin D3 protects against arteriosclerosis and inversely correlates with non-genetic intramuscular HO. However, the enhancement of chondrogenesis, BMP signaling, and possibly Activin A expression by vitamin D may be more relevant in FOP. There appears to be little potential for vitamin D to reduce HO in FOP, but testing the potential for excess vitamin D to promote HO may be warranted.
Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Colecalciferol/farmacología , Condrogénesis/fisiología , Miositis Osificante/metabolismo , Activinas/metabolismo , Animales , Humanos , Transducción de SeñalRESUMEN
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disease, characterized by the progressive ossification of skeletal muscles, fascia, tendons, and ligaments. In most cases, the great toes of patients show symmetrical congenital malformations. The causative gene for FOP has been identified as the activin A receptor, type 1 (ACVR1) gene (ACVR1). The ACVR1 R206H mutation is the most common mutation among FOP patients, and the ACVR1 G356D mutation has been identified as a rare mutation in a Japanese FOP patient with slow progression. In addition to musculoskeletal abnormalities, a series of autopsy studies described one FOP case, without genetic testing to identify ACVR1 mutation, showing nodular heterotopia at the edge of the fourth ventricle. Here, we report the general autopsy findings for a 75-year-old man with FOP, caused by the ACVR1 G356D mutation, including the precise examination of brainstem lesions. Postmortem examination revealed unique symmetrical glial hyperplasia of the pons and medulla oblongata. Microscopically, lesions of the pons involving residual neurons and lesions of the medulla oblongata consisted of subependymal cells. Immunohistochemical analysis of these lesions revealed developmental anomalies, with different cellular components. In this report, for the first time, we present the neuropathological description of a patient with genetically confirmed FOP and symmetrical glial hyperplasia of the pons and medulla oblongata. The presented pathological findings, in conjunction with previous reports implying that the glial hyperplasia of the brainstem is common in FOP, suggest that ACVR1 may play an unclarified developmental role in the human brainstem.
Asunto(s)
Tronco Encefálico/patología , Hiperplasia/patología , Miositis Osificante/patología , Neuroglía/patología , Anciano , Pruebas Genéticas/métodos , Humanos , Hiperplasia/genética , Masculino , Mutación/genética , Miositis Osificante/diagnóstico , Miositis Osificante/genéticaRESUMEN
The activin-like kinases are a family of kinases that play important roles in a variety of disease states. Of this class of kinases, ALK2, has been shown by a gain-of-function to be the primary driver of the childhood skeletal disease fibrodysplasia ossificans progressiva (FOP) and more recently the pediatric cancer diffuse intrinsic pontine glioma (DIPG). Herein, we report our efforts to identify a novel imidazo[1,2-a]pyridine scaffold as potent inhibitors of ALK2 with good in vivo pharmacokinetic properties suitable for future animal studies.
Asunto(s)
Receptores de Activinas Tipo I/antagonistas & inhibidores , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Miositis Osificante/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Quinolinas/síntesis química , Animales , Niño , Descubrimiento de Drogas , Humanos , Imidazolinas/química , Microsomas Hepáticos/efectos de los fármacos , Mutación , Inhibidores de Proteínas Quinasas/farmacocinética , Piridinas/química , Quinolinas/farmacocinética , Ratas , Transducción de Señal , Relación Estructura-ActividadRESUMEN
OBJECTIVES: Conditional Alk2Q207D-floxed (caALK2fl) mice have previously been used as a model of heterotopic ossification (HO). However, HO formation in this model can be highly variable, and it is unclear which methods reliably induce HO. Hence, these studies report validated methods for reproducibly inducing HO in caALK2fl mice. METHODS: Varying doses of Adex-cre and cardiotoxin (CTX) were injected into the calf muscles of 9, 14, or 28-day-old caALK2fl/- or caALK2fl/fl mice. HO was measured by planar radiography or microCT at 14-28 days post-injury. RESULTS: In 9-day-old caALK2fl/- or caALK2fl/fl mice, single injections of 109 PFU Adex-cre and 0.3 µg of CTX were sufficient to induce extensive HO within 14 days post-injury. In 28-day-old mice, the doses were increased to 5 x 109 PFU Adex-cre and 3.0 µg of CTX to achieve similar consistency, but at a slower rate versus younger mice. Using a crush injury, instead of CTX, also provided consistent induction of HO. Finally, the Type 1 BMPR inhibitor, DMH1, significantly reduced HO formation in 28-day-old caALK2fl/fl mice. CONCLUSIONS: These data illustrate multiple methods for reliable induction of localized HO in the caALK2flmouse that can serve as a starting point for new laboratories utilizing this model.
Asunto(s)
Receptores de Activinas Tipo I/genética , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/lesiones , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/genética , Animales , Cardiotoxinas/toxicidad , Miembro Posterior/diagnóstico por imagen , Miembro Posterior/lesiones , Ratones , Ratones Transgénicos , Osificación Heterotópica/inducido químicamente , Reproducibilidad de los ResultadosRESUMEN
Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are diseases that typically manifest in childhood and are associated with severely reduced life expectancy. However, there are currently no effective therapies for these diseases, which remain incurable. Activin receptor-like kinase-2 (ALK2), encoded by the ACVR1 gene, is a bone morphogenetic protein (BMP) type-I receptor subtype that plays an important physiological role in the development of bones, muscles, brain, and other organs. Constitutively active mutants of ALK2 have been identified as causative of FOP and involved in the tumorigenesis of DIPG owing to abnormal activation of BMP signaling, and therefore have emerged as promising treatment targets. Here, we describe these two diseases, along with the link to ALK2 signal transduction, and highlight potential ALK2 inhibitors that are under development to offer new hope for patients with FOP and DIPG.
Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Miositis Osificante/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Activinas Tipo II/metabolismo , Glioma Pontino Intrínseco Difuso/metabolismo , Humanos , Miositis Osificante/metabolismo , Inhibidores de Proteínas Quinasas/química , Transducción de Señal/efectos de los fármacosRESUMEN
Activins transduce the TGF-ß pathway through a heteromeric signaling complex consisting of type I and type II receptors, and activins also inhibit bone morphogenetic protein (BMP) signaling mediated by type I receptor ALK2. Recent studies indicated that activin A cross-activates the BMP pathway through ALK2R206H, a mutation associated with Fibrodysplasia Ossificans Progressiva (FOP). How activin A inhibits ALK2WT-mediated BMP signaling but activates ALK2R206H-mediated BMP signaling is not well understood, and here we offer some insights into its molecular mechanism. We first demonstrated that among four BMP type I receptors, ALK2 is the only subtype able to mediate the activin A-induced BMP signaling upon the dissociation of FKBP12. We further showed that BMP4 does not cross-signal TGF-ß pathway upon FKBP12 inhibition. In addition, although the roles of type II receptors in the ligand-independent BMP signaling activated by FOP-associated mutant ALK2 have been reported, their roles in activin A-induced BMP signaling remains unclear. We demonstrated in this study that the known type II BMP receptors contribute to activin A-induced BMP signaling through their kinase activity. Together, the current study provided important mechanistic insights at the molecular level into further understanding physiological and pathophysiological BMP signaling.
Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Activinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Activinas/fisiología , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/fisiología , Línea Celular , Regulación de la Expresión Génica/genética , Células HEK293 , Células Hep G2 , Humanos , Ratones , Osificación Heterotópica/genética , Fosforilación , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
OBJECTIVES: The human leucocyte antigen (HLA)-B27 confers an increased risk of spondyloarthritis (SpA) by unknown mechanism. The objective of this work was to uncover HLA-B27 non-canonical properties that could explain its pathogenicity, using a new Drosophila model. METHODS: We produced transgenic Drosophila expressing the SpA-associated HLA-B*27:04 or HLA-B*27:05 subtypes, or the non-associated HLA-B*07:02 allele, alone or in combination with human ß2-microglobulin (hß2m), under tissue-specific drivers. Consequences of transgenes expression in Drosophila were examined and affected pathways were investigated by the genetic interaction experiments. Predictions of the model were further tested in immune cells from patients with SpA. RESULTS: Loss of crossveins in the wings and a reduced eye phenotype were observed after expression of HLA-B*27:04 or HLA-B*27:05 in Drosophila but not in fruit flies expressing the non-associated HLA-B*07:02 allele. These HLA-B27-induced phenotypes required the presence of hß2m that allowed expression of well-folded HLA-B conformers at the cell surface. Loss of crossveins resulted from a dominant negative effect of HLA-B27 on the type I bone morphogenetic protein (BMP) receptor saxophone (Sax) with which it interacted, resulting in elevated mothers against decapentaplegic (Mad, a Drosophila receptor-mediated Smad) phosphorylation. Likewise, in immune cells from patients with SpA, HLA-B27 specifically interacted with activin receptor-like kinase-2 (ALK2), the mammalian Sax ortholog, at the cell surface and elevated Smad phosphorylation was observed in response to activin A and transforming growth factor ß (TGFß). CONCLUSIONS: Antagonistic interaction of HLA-B27 with ALK2, which exerts inhibitory functions on the TGFß/BMP signalling pathway at the cross-road between inflammation and ossification, could adequately explain SpA development.