RESUMEN
Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics.
Asunto(s)
Bacteriófagos/inmunología , Sistemas CRISPR-Cas/inmunología , Terapia de Inmunosupresión , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/virología , Evolución Molecular , Modelos Teóricos , Pseudomonas aeruginosa/genéticaRESUMEN
Many plant species in historically fire-dependent ecosystems exhibit fire-stimulated flowering. While greater reproductive effort after fire is expected to result in increased reproductive outcomes, seed production often depends on pollination, the spatial distribution of prospective mates, and the timing of their reproductive activity. Fire-stimulated flowering may thus have limited fitness benefits in small, isolated populations where mating opportunities are restricted and pollination rates are low. We conducted a 6-y study of 6,357 Echinacea angustifolia (Asteraceae) individuals across 35 remnant prairies in Minnesota (USA) to experimentally evaluate how fire effects on multiple components of reproduction vary with population size in a common species. Fire increased annual reproductive effort across populations, doubling the proportion of plants in flower and increasing the number of flower heads 65% per plant. In contrast, fire's influence on reproductive outcomes differed between large and small populations, reflecting the density-dependent effects of fire on spatiotemporal mating potential and pollination. In populations with fewer than 20 individuals, fire did not consistently increase pollination or annual seed production. Above this threshold, fire increased mating potential, leading to a 24% increase in seed set and a 71% increase in annual seed production. Our findings suggest that density-dependent effects of fire on pollination largely determine plant reproductive outcomes and could influence population dynamics across fire-dependent systems. Failure to account for the density-dependent effects of fire on seed production may lead us to overestimate the beneficial effects of fire on plant demography and the capacity of fire to maintain plant diversity, especially in fragmented habitats.
Asunto(s)
Ecosistema , Aptitud Genética , Humanos , Reproducción , Polinización , SemillasRESUMEN
Species interact in different ways, including competition, facilitation and predation. These interactions can be non-linear or higher order and may depend on time or species densities. Although these higher-order interactions are virtually ubiquitous, they remain poorly understood, as they are challenging both theoretically and empirically. We propose to adapt niche and fitness differences from modern coexistence theory and apply them to species interactions over time. As such, they may not merely inform about coexistence, but provide a deeper understanding of how species interactions change. Here, we investigated how the exploitation of a biotic resource (plant) by phytophagous arthropods affects their interactions. We performed monoculture and competition experiments to fit a generalized additive mixed model to the empirical data, which allowed us to calculate niche and fitness differences. We found that species switch between different types of interactions over time, including intra- and interspecific facilitation, and strong and weak competition.
Asunto(s)
Ecosistema , Animales , Artrópodos/fisiología , Modelos Biológicos , Plantas , Factores de Tiempo , Herbivoria , Conducta Competitiva , Aptitud GenéticaRESUMEN
AbstractAn individual's access to mates (i.e., its "mating potential") can constrain its reproduction but may also influence its fitness through effects on offspring survival. For instance, mate proximity may correspond with relatedness and lead to inbreeding depression in offspring. While offspring production and survival might respond differently to mating potential, previous studies have not considered the simultaneous effects of mating potential on these fitness components. We investigated the relationship of mating potential with both production and survival of offspring in populations of a long-lived herbaceous perennial, Echinacea angustifolia. Across 7 years and 14 sites, we quantified the mating potential of maternal plants in 1,278 mating bouts and followed the offspring from these bouts over 8 years. We used aster models to evaluate the relationship of mating potential with the number of offspring that emerged and that were alive after 8 years. Seedling emergence increased with mating potential. Despite this, the number of offspring surviving after 8 years showed no relationship to mating potential. Our results support the broader conclusion that the effect of mating potential on fitness erodes over time because of demographic stochasticity at the maternal level.
Asunto(s)
Echinacea , Aptitud Genética , Reproducción , Echinacea/fisiología , Plantones/fisiología , Plantones/crecimiento & desarrolloRESUMEN
AbstractPeriodical cicadas live 13 or 17 years underground as nymphs, then emerge in synchrony as adults to reproduce. Developmentally synchronized populations called broods rarely coexist, with one dominant brood locally excluding those that emerge in off years. Twelve modern 17-year cicada broods are believed to have descended from only three ancestral broods following the last glaciation. The mechanisms by which these daughter broods overcame exclusion by the ancestral brood to synchronously emerge in a different year, however, are elusive. Here, we demonstrate that temporal variation in the population density of generalist predators can allow intermittent opportunities for new broods to invade, even though a single brood remains dominant most of the time. We show that this mechanism is consistent, in terms of the type and frequency of brood replacements, with the distribution of periodical cicada broods throughout North America today. Although we investigate one particularly charismatic case study, the mechanisms involved (competitive exclusion, Allee effects, trait variation, predation, and temporal variability) are ubiquitous and could contribute to patterns of species diversity in a range of systems.
Asunto(s)
Hemípteros , Animales , Conducta Predatoria , Ninfa , América del NorteRESUMEN
Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual's infection history.
Asunto(s)
Interacciones Huésped-Parásitos , Animales , Modelos Inmunológicos , Retroalimentación Fisiológica , Linfocitos T/inmunologíaRESUMEN
In the study of biological populations, the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction. This effect supersedes the classical logistic model, in which low densities are favorable due to lack of competition, and includes situations related to deficit of genetic pools, inbreeding depression, mate limitations, unavailability of collaborative strategies due to lack of conspecifics, etc. The goal of this paper is to provide a detailed mathematical analysis of the Allee effect. After recalling the ordinary differential equation related to the Allee effect, we will consider the situation of a diffusive population. The dispersal of this population is quite general and can include the classical Brownian motion, as well as a Lévy flight pattern, and also a "mixed" situation in which some individuals perform classical random walks and others adopt Lévy flights (which is also a case observed in nature). We study the existence and nonexistence of stationary solutions, which are an indication of the survival chance of a population at the equilibrium. We also analyze the associated evolution problem, in view of monotonicity in time of the total population, energy consideration, and long-time asymptotics. Furthermore, we also consider the case of an "inverse" Allee effect, in which low density populations may access additional benefits.
Asunto(s)
Ecosistema , Conceptos Matemáticos , Modelos Biológicos , Dinámica Poblacional , Animales , Dinámica Poblacional/estadística & datos numéricos , Evolución Biológica , Densidad de Población , Distribución Normal , Extinción BiológicaRESUMEN
We study an integro-difference equation model that describes the spatial dynamics of a species with a strong Allee effect in a shifting habitat. We examine the case of a shifting semi-infinite bad habitat connected to a semi-infinite good habitat. In this case we rigorously establish species persistence (non-persistence) if the habitat shift speed is less (greater) than the asymptotic spreading speed of the species in the good habitat. We also examine the case of a finite shifting patch of hospitable habitat, and find that the habitat shift speed must be less than the asymptotic spreading speed associated with the habitat and there is a critical patch size for species persistence. Spreading speeds and traveling waves are established to address species persistence. Our numerical simulations demonstrate the theoretical results and show the dependence of the critical patch size on the shift speed.
Asunto(s)
Ecosistema , Modelos Biológicos , Simulación por Computador , Dinámica PoblacionalRESUMEN
Our ability to understand population spread dynamics is complicated by rapid evolution, which renders simple ecological models insufficient. If dispersal ability evolves, more highly dispersive individuals may arrive at the population edge than less dispersive individuals (spatial sorting), accelerating spread. If individuals at the low-density population edge benefit (escape competition), high dispersers have a selective advantage (spatial selection). These two processes are often described as forming a positive feedback loop; they reinforce each other, leading to faster spread. Although spatial sorting is close to universal, this form of spatial selection is not: low densities can be detrimental for organisms with Allee effects. Here, we present two conceptual models to explore the feedback loops that form between spatial sorting and spatial selection. We show that the presence of an Allee effect can reverse the positive feedback loop between spatial sorting and spatial selection, creating a negative feedback loop that slows population spread.
Asunto(s)
Modelos Biológicos , Modelos Teóricos , Humanos , Dinámica PoblacionalRESUMEN
AbstractAlternative stable ecosystem states are possible under the same environmental conditions in models of two or three interacting species and an array of feedback loops. However, multispecies food webs might weaken the feedbacks loops that can create alternative stable states. To test how this potential depends on food web properties, we develop a many-species model where consumer Allee effects emerge from consumer-resource interactions. We evaluate the interactive effects of food web connectance, interspecific trait diversity, and two classes of feedbacks: specialized feedbacks, where consumption of individual resources declines at high resource abundance (e.g., from schooling or reaching size refugia), and aggregate feedbacks, where overall resource abundance reduces consumer recruitment (e.g., from resources enhancing competition or mortality experienced by recruits). We find that aggregate feedbacks maintain, and specialized feedbacks reduce, the potential for alternative states. Interspecific trait diversity decreases the prevalence of alternative stable states more for specialized than for aggregate feedbacks. Increasing food web connectance increases the potential for alternative stable states for aggregated feedbacks but decreases it for specialized feedbacks, where losing vulnerable consumers can cascade into food web collapses. Altogether, multispecies food webs can limit the set of processes that create alternative stable states and impede consumer recovery from disturbance.
Asunto(s)
Ecosistema , Cadena Alimentaria , Retroalimentación , FenotipoRESUMEN
Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behaviour. Male bats were more active during autumn which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects.
Asunto(s)
Quirópteros , Hibernación , Micosis , Femenino , Masculino , Animales , Animales Salvajes , Quirópteros/microbiología , Micosis/epidemiología , Micosis/veterinaria , Micosis/microbiología , HongosRESUMEN
In this paper, a single species model with Allee effect driven by correlated colored noises is proposed and investigated. The stationary probability density of the model is obtained using the approximative Fokker-Planck equation, and its shape is discussed in detail. P-bifurcation and noise-induced bistability are explored, followed by the observation of noise-enhanced stability through mean first passage time analysis. Our findings demonstrate that: (i) noise can induce P-bifurcation, causing the structure of a stationary probability distribution to shift from unimodal to monotonic under positive correlation and switch from unimodal to bimodal under negative correlation; (ii) correlation time promotes population growth, leading to a higher probability of large population size and delaying the extinction process; (iii) noise-enhanced stability induced by multiplicative noise depends on both additive noise and correlation time, while it always exists for additive noise.
Asunto(s)
Crecimiento Demográfico , Densidad de Población , ProbabilidadRESUMEN
We construct a spatial model that incorporates Allee-type and competition interactions for vegetation as an evolving random field of biomass density. The cumulative effect of close-range precipitation-dependent interactions is controlled by a parameter defining precipitation frequency. We identify a narrow parameter range in which the behavior of the system changes from survival of vegetation to extinction, via a transitional aggregation pattern. The aggregation pattern is tied to the initial configuration and appears to arise differently from Turing's diffusion and differential flow patterns of other models. There is close agreement of our critical transition parameter range with that of the corresponding evolving random mean-field model.
Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Biomasa , DifusiónRESUMEN
We study a reaction-diffusion equation that describes the growth of a population with a strong Allee effect in a bounded habitat which shifts at a speed [Formula: see text]. We demonstrate that the existence of forced positive traveling waves depends on habitat size L, and [Formula: see text], the speed of traveling wave for the corresponding reaction-diffusion equation with the same growth function all over the entire unbounded spatial domain. It is shown that for [Formula: see text] there exists a positive number [Formula: see text] such that for [Formula: see text] there are two positive traveling waves and for [Formula: see text] there is no positive traveling wave. It is also shown if [Formula: see text] for any [Formula: see text] there is no positive traveling wave. The dynamics of the equation are further explored through numerical simulations.
Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Simulación por Computador , Dinámica Poblacional , EcosistemaRESUMEN
The Lotka-Volterra competition model (LVCM) is a fundamental tool for ecology, widely used to represent complex communities. The Allee effect (AE) is a phenomenon in which there is a positive correlation between population density and fitness, at low population densities. However, the interplay between the LVCM and AE has been seldom analyzed in multispecies models. Here, we analyze the mathematical properties of the LVCM [Formula: see text] AE, investigating the coexistence of species interacting through neutral diffuse competition, their equilibria and stable points. Minimum viable population density arises as the threshold below which species go extinct, characteristic of strong Allee effects. Then, by imposing relationships of main parameters to body size, i.e. allometric scaling, we derive a general solution to the size-scaling maximum and minimum expected density under plausible scenarios. The scaling of maximum population density is consistent with the literature, but we also provide novel predictions on the scaling of the lower limit to population density, a critical value for conservation science. The resulting framework is general and yields results that increase our current understanding of how complex demographic processes can be linked to ubiquitous ecological patterns.
Asunto(s)
Tamaño Corporal , Densidad de PoblaciónRESUMEN
Allee effect in population dynamics has a major impact in suppressing the paradox of enrichment through global bifurcation, and it can generate highly complex dynamics. The influence of the reproductive Allee effect, incorporated in the prey's growth rate of a prey-predator model with Beddington-DeAngelis functional response, is investigated here. Preliminary local and global bifurcations are identified of the temporal model. Existence and non-existence of heterogeneous steady-state solutions of the spatio-temporal system are established for suitable ranges of parameter values. The spatio-temporal model satisfies Turing instability conditions, but numerical investigation reveals that the heterogeneous patterns corresponding to unstable Turing eigenmodes act as a transitory pattern. Inclusion of the reproductive Allee effect in the prey population has a destabilising effect on the coexistence equilibrium. For a range of parameter values, various branches of stationary solutions including mode-dependent Turing solutions and localized pattern solutions are identified using numerical bifurcation technique. The model is also capable to produce some complex dynamic patterns such as travelling wave, moving pulse solution, and spatio-temporal chaos for certain range of parameters and diffusivity along with appropriate choice of initial conditions. Judicious choices of parametrization for the Beddington-DeAngelis functional response help us to infer about the resulting patterns for similar prey-predator models with Holling type-II functional response and ratio-dependent functional response.
Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Conducta Predatoria/fisiología , Dinámica Poblacional , Frecuencia Cardíaca , Cadena AlimentariaRESUMEN
We present a hybrid method for calculating the equilibrium population-distributions of integrodifference equations (IDEs) with strictly increasing growth, for populations that are confined to a finite habitat-patch. This method is based on approximating the growth function of the IDE with a piecewise-constant function, and we call the resulting model a block-pulse IDE. We explicitly write out analytic expressions for the iterates and equilibria of the block-pulse IDEs as sums of cumulative distribution functions. We characterize the dynamics of one-, two-, and three-step block-pulse IDEs, including formal stability analyses, and we explore the bifurcation structure of these models. These simple models display rich dynamics, with numerous fold bifurcations. We then use three-, five-, and ten-step block-pulse IDEs, with a numerical root finder, to approximate models with compensatory Beverton-Holt growth and depensatory, or Allee-effect, growth. Our method provides a good approximation for the equilibrium distributions for compensatory and depensatory growth and offers numerical and analytical advantages over the original growth models.
Asunto(s)
Modelos Teóricos , Crecimiento DemográficoRESUMEN
Fire is an important determinant of habitat structure and biodiversity across ecosystems worldwide. In fire-dependent communities, similar to the North American prairie, fire suppression contributes to local plant extinctions. Yet the demographic mechanisms responsible for species loss have not been directly investigated. We conducted a 21-y longitudinal study of 778 individual plants of Echinacea angustifolia, a widespread perennial species with chronically limited mating opportunities, to explore how fire affects reproduction. In a large preserve, with management units on different burn schedules, we investigated Echinacea mating scenes, which quantify isolation from potential mates and overlap in the timing of flowering, to determine the extent to which fire influences the potential for sexual reproduction. We demonstrate that fire consistently increased mating opportunities by synchronizing reproductive effort. Each fire occurred during fall or spring and stimulated flowering in the subsequent summer, thus synchronizing reproduction among years and increasing the proximity of potential mates after a fire. Greater within-season flowering synchrony in postfire mating scenes further increased mating potential. The improved postfire mating scene enhanced reproduction by increasing pollination efficiency. Seed set in scenes postfire exceeded other scenes by 55%, and annual fecundity nearly doubled (88% increase). We predict the reproductive benefits of synchronized flowering after fire can alleviate mate-finding Allee effects, promote population growth, and forestall local extirpation in small populations of Echinacea and many other prairie species. Furthermore, the synchronization of flowering by burning may improve mating opportunities, reproduction, and the likelihood of persistence for many other plant species in fire-dependent habitats.
Asunto(s)
Flores , Pradera , Polinización/fisiología , Incendios Forestales , Echinacea/crecimiento & desarrollo , Echinacea/fisiología , Flores/crecimiento & desarrollo , Flores/fisiología , Aptitud Genética , Estudios Longitudinales , Dinámica Poblacional , Semillas/fisiologíaRESUMEN
Anthropogenic environmental change is altering the behavior of animals in ecosystems around the world. Although behavior typically occurs on much faster timescales than demography, it can nevertheless influence demographic processes. Here, we use detailed data on behavior and empirical estimates of demography from a coral reef ecosystem to develop a coupled behavioral-demographic ecosystem model. Analysis of the model reveals that behavior and demography feed back on one another to determine how the ecosystem responds to anthropogenic forcing. In particular, an empirically observed feedback between the density and foraging behavior of herbivorous fish leads to alternative stable ecosystem states of coral population persistence or collapse (and complete algal dominance). This feedback makes the ecosystem more prone to coral collapse under fishing pressure but also more prone to recovery as fishing is reduced. Moreover, because of the behavioral feedback, the response of the ecosystem to changes in fishing pressure depends not only on the magnitude of changes in fishing but also on the pace at which changes are imposed. For example, quickly increasing fishing to a given level can collapse an ecosystem that would persist under more gradual change. Our results reveal conditions under which the pace and not just the magnitude of external forcing can dictate the response of ecosystems to environmental change. More generally, our multiscale behavioral-demographic framework demonstrates how high-resolution behavioral data can be incorporated into ecological models to better understand how ecosystems will respond to perturbations.
Asunto(s)
Cambio Climático , Ecosistema , Retroalimentación Fisiológica/fisiología , Modelos Biológicos , Animales , Antozoos/fisiología , Arrecifes de Coral , Peces/fisiología , Herbivoria/fisiología , Actividades Humanas , HumanosRESUMEN
Recently a gender-selective harvesting strategy has been proposed for possible control of aquatic invasive species, wherein females of the invasive species are harvested, whilst stocking the males (abbreviated as FHMS strategy) (Lyu et al. in Nat Resour Model 33(2):e12252, 2020). We consider the FHMS strategy with a weak Allee effect, and show that its extinction boundary need not be hyperbolic. To the best of our knowledge, this is the first example of a non-hyperbolic extinction boundary in two-compartment mating models structured by sex. The model possesses a rich dynamical structure, with several local co-dimension one bifurcations occurring. We also show the occurrence of a global homoclinic bifurcation, which has applicability for large scale strategic bio-control.