Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 305-331, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28375741

RESUMEN

The identification of heterozygous mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) in subsets of cancers, including secondary glioblastoma, acute myeloid leukemia, intrahepatic cholangiocarcinoma, and chondrosarcomas, led to intense discovery efforts to delineate the mutations' involvement in carcinogenesis and to develop therapeutics, which we review here. The three IDH isoforms (nicotinamide adenine dinucleotide phosphate-dependent IDH1 and IDH2, and nicotinamide adenine dinucleotide-dependent IDH3) contribute to regulating the circuitry of central metabolism. Several biochemical and genetic observations led to the discovery of the neomorphic production of the oncometabolite (R)-2-hydroxyglutarate (2-HG) by mutant IDH1 and IDH2 (mIDH). Heterozygous mutation of IDH1/2 and accumulation of 2-HG cause profound metabolic and epigenetic dysregulation, including inhibition of normal cellular differentiation, leading to disease. Crystallographic structural studies during the development of compounds targeting mIDH demonstrated common allosteric inhibition by distinct chemotypes. Ongoing clinical trials in patients with mIDH advanced hematologic malignancies have demonstrated compelling clinical proof-of-concept, validating the biology and drug discovery approach.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Acetamidas/síntesis química , Acetamidas/uso terapéutico , Antineoplásicos/síntesis química , Bencenoacetamidas/síntesis química , Bencenoacetamidas/uso terapéutico , Bencimidazoles/síntesis química , Bencimidazoles/uso terapéutico , Biomarcadores de Tumor/análisis , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Expresión Génica , Glutaratos/análisis , Humanos , Imidazoles/síntesis química , Imidazoles/uso terapéutico , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Modelos Moleculares , Mutación , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Investigación Biomédica Traslacional
2.
EMBO J ; 43(1): 14-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177313

RESUMEN

Sodium-calcium exchanger proteins influence calcium homeostasis in many cell types and participate in a wide range of physiological and pathological processes. Here, we elucidate the cryo-EM structure of the human Na+/Ca2+ exchanger NCX1.3 in the presence of a specific inhibitor, SEA0400. Conserved ion-coordinating residues are exposed on the cytoplasmic face of NCX1.3, indicating that the observed structure is stabilized in an inward-facing conformation. We show how regulatory calcium-binding domains (CBDs) assemble with the ion-translocation transmembrane domain (TMD). The exchanger-inhibitory peptide (XIP) is trapped within a groove between the TMD and CBD2 and predicted to clash with gating helices TMs1/6 at the outward-facing state, thus hindering conformational transition and promoting inactivation of the transporter. A bound SEA0400 molecule stiffens helix TM2ab and affects conformational rearrangements of TM2ab that are associated with the ion-exchange reaction, thus allosterically attenuating Ca2+-uptake activity of NCX1.3.


Asunto(s)
Calcio , Intercambiador de Sodio-Calcio , Humanos , Compuestos de Anilina/farmacología , Calcio/metabolismo , Éteres Fenílicos/farmacología , Intercambiador de Sodio-Calcio/química
3.
Proc Natl Acad Sci U S A ; 120(42): e2303690120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37819980

RESUMEN

The modification of nucleocytoplasmic proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an important regulator of cell physiology. O-GlcNAc is installed on over a thousand proteins by just one enzyme, O-GlcNAc transferase (OGT). How OGT is regulated is therefore a topic of interest. To gain insight into these questions, we used OGT to perform phage display selection from an unbiased library of ~109 peptides of 15 amino acids in length. Following rounds of selection and deep mutational panning, we identified a high-fidelity peptide consensus sequence, [Y/F]-x-P-x-Y-x-[I/M/F], that drives peptide binding to OGT. Peptides containing this sequence bind to OGT in the high nanomolar to low micromolar range and inhibit OGT in a noncompetitive manner with low micromolar potencies. X-ray structural analyses of OGT in complex with a peptide containing this motif surprisingly revealed binding to an exosite proximal to the active site of OGT. This structure defines the detailed molecular basis driving peptide binding and explains the need for specific residues within the sequence motif. Analysis of the human proteome revealed this motif within 52 nuclear and cytoplasmic proteins. Collectively, these data suggest a mode of regulation of OGT by which polypeptides can bind to this exosite to cause allosteric inhibition of OGT through steric occlusion of its active site. We expect that these insights will drive improved understanding of the regulation of OGT within cells and enable the development of new chemical tools to exert fine control over OGT activity.


Asunto(s)
Bacteriófagos , Péptidos , Humanos , Secuencia de Aminoácidos , N-Acetilglucosaminiltransferasas/metabolismo , Mutación , Bacteriófagos/metabolismo
4.
J Biol Chem ; 299(12): 105457, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949226

RESUMEN

One-carbon metabolism is a central metabolic pathway critical for the biosynthesis of several amino acids, methyl group donors, and nucleotides. The pathway mostly relies on the transfer of a carbon unit from the amino acid serine, through the cofactor folate (in its several forms), and to the ultimate carbon acceptors that include nucleotides and methyl groups used for methylation of proteins, RNA, and DNA. Nucleotides are required for DNA replication, DNA repair, gene expression, and protein translation, through ribosomal RNA. Therefore, the one-carbon metabolism pathway is essential for cell growth and function in all cells, but is specifically important for rapidly proliferating cells. The regulation of one-carbon metabolism is a critical aspect of the normal and pathological function of the pathway, such as in cancer, where hijacking these regulatory mechanisms feeds an increased need for nucleotides. One-carbon metabolism is regulated at several levels: via gene expression, posttranslational modification, subcellular compartmentalization, allosteric inhibition, and feedback regulation. In this review, we aim to inform the readers of relevant one-carbon metabolism regulation mechanisms and to bring forward the need to further study this aspect of one-carbon metabolism. The review aims to integrate two major aspects of cancer metabolism-signaling downstream of nutrient sensing and one-carbon metabolism, because while each of these is critical for the proliferation of cancerous cells, their integration is critical for comprehensive understating of cellular metabolism in transformed cells and can lead to clinically relevant insights.


Asunto(s)
Carbono , Activación Enzimática , Enzimas , Humanos , Aminoácidos/biosíntesis , Aminoácidos/metabolismo , Carbono/metabolismo , Proliferación Celular , Enzimas/metabolismo , Ácido Fólico/metabolismo , Metilación , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/patología , Nucleótidos/biosíntesis , Nucleótidos/metabolismo , Serina/metabolismo
5.
Proteins ; 92(1): 37-43, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37497763

RESUMEN

Capping protein (CP) binds to the barbed end of an actin-filament and inhibits its elongation. CARMIL binds CP and dissociates it from the barbed end of the actin-filament. The binding of CARMIL peptide alters the flexibility of CP, which is considered to facilitate the dissociation. Twinfilin also binds to CP through its C-terminal tail. The complex structures of the CP/twinfilin-tail (TW-tail) peptide indicate that the binding sites of CARMIL and TW-tail overlap. However, TW-tail binding does not facilitate the dissociation of CP from the barbed end. We extensively investigated the flexibilities of CP in the CP/TW-tail or CP/CARMIL complexes using an elastic network model and concluded that TW-tail binding does not alter the flexibility of CP. Our extensive analysis also highlighted that the strong contacts of peptides with the two domains of CP, that is, the CP-L and CP-S domains, are key to changing the flexibilities of CP. CARMIL peptides can interact strongly with both of the domains, while TW-tail peptides exclusively interact with the CP-S domain because the binding site of TW-tail on CP relatively shifts to the CP-S domain compared with that of CP/CARMIL. This result supports our hypothesis that the dissociation of CP from the barbed end is regulated by the flexibility of CP.


Asunto(s)
Proteínas de Capping de la Actina , Proteínas de Microfilamentos , Proteínas de Microfilamentos/metabolismo , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Unión Proteica , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Péptidos/química
6.
J Neurochem ; 168(9): 1973-1992, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38131125

RESUMEN

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site. The three sites were tested using a combination of molecular dynamics simulations and analysis of the inhibition of glycine transport of a series point mutated GlyT2 using electrophysiological methods. We demonstrate that the lipid allosteric site on GlyT2 is the most likely binding site for ORG25543. We also demonstrate that cholesterol derived from the cell membrane can form specific interactions with inhibitor-bound transporters to form an allosteric network of regulatory sites. These observations will guide the future design of GlyT2 inhibitors with the objective of minimising on-target side effects and improving the therapeutic window for the treatment of patients suffering from neuropathic pain.


Asunto(s)
Sitio Alostérico , Analgésicos , Proteínas de Transporte de Glicina en la Membrana Plasmática , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Analgésicos/farmacología , Analgésicos/química , Sitio Alostérico/efectos de los fármacos , Humanos , Animales , Simulación de Dinámica Molecular , Sitios de Unión/efectos de los fármacos , Glicina/farmacología , Benzamidas
7.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031249

RESUMEN

SbtA is a high-affinity, sodium-dependent bicarbonate transporter found in the cyanobacterial CO2-concentrating mechanism (CCM). SbtA forms a complex with SbtB, while SbtB allosterically regulates the transport activity of SbtA by binding with adenyl nucleotides. The underlying mechanism of transport and regulation of SbtA is largely unknown. In this study, we report the three-dimensional structures of the cyanobacterial Synechocystis sp. PCC 6803 SbtA-SbtB complex in both the presence and absence of HCO3- and/or AMP at 2.7 Å and 3.2 Å resolution. An analysis of the inward-facing state of the SbtA structure reveals the HCO3-/Na+ binding site, providing evidence for the functional unit as a trimer. A structural comparison found that SbtA adopts an elevator mechanism for bicarbonate transport. A structure-based analysis revealed that the allosteric inhibition of SbtA by SbtB occurs mainly through the T-loop of SbtB, which binds to both the core domain and the scaffold domain of SbtA and locks it in an inward-facing state. T-loop conformation is stabilized by the AMP molecules binding at the SbtB trimer interfaces and may be adjusted by other adenyl nucleotides. The unique regulatory mechanism of SbtA by SbtB makes it important to study inorganic carbon uptake systems in CCM, which can be used to modify photosynthesis in crops.


Asunto(s)
Modelos Moleculares , Simportadores de Sodio-Bicarbonato/metabolismo , Synechocystis/metabolismo , Adenosina Monofosfato/metabolismo , Regulación Alostérica , Simportadores de Sodio-Bicarbonato/genética , Synechocystis/genética
8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33402433

RESUMEN

Artemisinin-resistant malaria parasites have emerged and have been spreading, posing a significant public health challenge. Antimalarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a "selective starvation" strategy by inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in P. falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. The crystal structure of hGLUT3, which shares 80% sequence similarity with hGLUT1, was resolved in complex with C3361, a moderate PfHT1-specific inhibitor, at 2.3-Å resolution. Structural comparison between the present hGLUT3-C3361 and our previously reported PfHT1-C3361 confirmed the unique inhibitor binding-induced pocket in PfHT1. We then designed small molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure-activity relationship studies, the TH-PF series was identified to selectively inhibit PfHT1 over hGLUT1 and potent against multiple strains of the blood-stage P. falciparum Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously target the orthosteric and allosteric sites of a transporter.


Asunto(s)
Antimaláricos/química , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/ultraestructura , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Monosacáridos/ultraestructura , Proteínas Protozoarias/ultraestructura , Sitio Alostérico , Secuencia de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/química , Transportador de Glucosa de Tipo 3/química , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Plasmodium falciparum/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Conformación Proteica/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Relación Estructura-Actividad
9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125865

RESUMEN

Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase (5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway. Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-acetyl-11-keto-ß-boswellic acid (AKBA) acts as a natural allosteric inhibitor targeting 5LOX. However, the precise mechanisms of inhibition have remained unclear. In this study, Gaussian accelerated molecular dynamics (GaMD) simulation was employed to elucidate the inhibitory mechanisms of NDGA and AKBA on 5LOX. It was found that the orthosteric inhibitor NDGA was tightly bound in the protein's active pocket, occupying the active site and inhibiting the catalytic activity of the 5LOX enzyme through competitive inhibition. The binding of the allosteric inhibitor AKBA induced significant changes at the distal active site, leading to a conformational shift of residues 168-173 from a loop to an α-helix and significant negative correlated motions between residues 285-290 and 375-400, reducing the distance between these segments. In the simulation, the volume of the active cavity in the stable conformation of the protein was reduced, hindering the substrate's entry into the active cavity and, thereby, inhibiting protein activity through allosteric effects. Ultimately, Markov state models (MSM) were used to identify and classify the metastable states of proteins, revealing the transition times between different conformational states. In summary, this study provides theoretical insights into the inhibition mechanisms of 5LOX by AKBA and NDGA, offering new perspectives for the development of novel inhibitors specifically targeting 5LOX, with potential implications for anti-inflammatory drug development.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Inhibidores de la Lipooxigenasa , Cadenas de Markov , Simulación de Dinámica Molecular , Araquidonato 5-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Humanos , Dominio Catalítico , Unión Proteica , Masoprocol/farmacología , Masoprocol/química , Conformación Proteica
10.
J Biol Chem ; 298(8): 102238, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809644

RESUMEN

Inhibitors that bind competitively to the ATP binding pocket in the kinase domain of the oncogenic fusion protein BCR-Abl1 are used successfully in targeted therapy of chronic myeloid leukemia (CML). Such inhibitors provided the first proof of concept that kinase inhibition can succeed in a clinical setting. However, emergence of drug resistance and dose-dependent toxicities limit the effectiveness of these drugs. Therefore, treatment with a combination of drugs without overlapping resistance mechanisms appears to be an appropriate strategy. In the present work, we explore the effectiveness of combination therapies of the recently developed allosteric inhibitor asciminib with the ATP-competitive inhibitors nilotinib and dasatinib in inhibiting the BCR-Abl1 kinase activity in CML cell lines. Through these experiments, we demonstrate that asciminib significantly enhances the inhibition activity of nilotinib, but not of dasatinib. Exploring molecular mechanisms for such allosteric enhancement via systematic computational investigation incorporating molecular dynamics, metadynamics simulations, and density functional theory calculations, we found two distinct contributions. First, binding of asciminib triggers conformational changes in the inactive state of the protein, thereby making the activation process less favorable by ∼4 kcal/mol. Second, the binding of asciminib decreases the binding free energies of nilotinib by ∼3 and ∼7 kcal/mol for the wildtype and T315I-mutated protein, respectively, suggesting the possibility of reducing nilotinib dosage and lowering risk of developing resistance in the treatment of CML.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Niacinamida , Pirazoles , Pirimidinas , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Dasatinib/farmacología , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Mutación , Niacinamida/análogos & derivados , Niacinamida/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología
11.
J Biol Chem ; 298(3): 101719, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151690

RESUMEN

The mitochondrial protein LonP1 is an ATP-dependent protease that mitigates cell stress and calibrates mitochondrial metabolism and energetics. Biallelic mutations in the LONP1 gene are known to cause a broad spectrum of diseases, and LonP1 dysregulation is also implicated in cancer and age-related disorders. Despite the importance of LonP1 in health and disease, specific inhibitors of this protease are unknown. Here, we demonstrate that 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its -methyl and -imidazole derivatives reversibly inhibit LonP1 by a noncompetitive mechanism, blocking ATP-hydrolysis and thus proteolysis. By contrast, we found that CDDO-anhydride inhibits the LonP1 ATPase competitively. Docking of CDDO derivatives in the cryo-EM structure of LonP1 shows these compounds bind a hydrophobic pocket adjacent to the ATP-binding site. The binding site of CDDO derivatives was validated by amino acid substitutions that increased LonP1 inhibition and also by a pathogenic mutation that causes cerebral, ocular, dental, auricular and skeletal (CODAS) syndrome, which ablated inhibition. CDDO failed to inhibit the ATPase activity of the purified 26S proteasome, which like LonP1 belongs to the AAA+ superfamily of ATPases Associated with diverse cellular Activities, suggesting that CDDO shows selectivity within this family of ATPases. Furthermore, we show that noncytotoxic concentrations of CDDO derivatives in cultured cells inhibited LonP1, but not the 26S proteasome. Taken together, these findings provide insights for future development of LonP1-specific inhibitors with chemotherapeutic potential.


Asunto(s)
Proteasas ATP-Dependientes , Adenosina Trifosfato , Mitocondrias , Proteínas Mitocondriales , Ácido Oleanólico/análogos & derivados , Adenosina Trifosfato/metabolismo , Endopeptidasas/metabolismo , Hidrólisis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Ácido Oleanólico/farmacología
12.
New Phytol ; 239(1): 146-158, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36978283

RESUMEN

Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf-like kinase HT1 as a required step for stomatal movements caused by changes in CO2 concentration. However, whether MPK12 kinase activity is required for regulation of CO2 -induced stomatal responses warrants in-depth investigation. We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2 signaling that relies on allosteric inhibition of HT1. We show that CO2 /HCO3 - -enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase-dead and constitutively active versions of MPK12 in a plant line where MPK12 is deleted, we confirmed that CO2 -dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2 /HCO3 - and present structural modeling that explains the MPK12:HT1 interaction interface. These data add to the model that MPK12 kinase-activity-independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2 concentration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosforilación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Dióxido de Carbono/metabolismo , Mutación , Estomas de Plantas/fisiología
13.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298571

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.


Asunto(s)
Neoplasias , Monoéster Fosfórico Hidrolasas , Humanos , Hipoglucemiantes/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Descubrimiento de Drogas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Inhibidores Enzimáticos/farmacología
14.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513289

RESUMEN

Mammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear. Here, we attempt to define a common pharmacophore, which is critical for this allosteric inhibition. We found that substituted imidazoles induce weaker inhibitory effects when compared with the indole derivatives. In silico docking studies and molecular dynamics simulations using a dimeric allosteric enzyme model, in which the inhibitor occupies the substrate-binding pocket of one monomer, whereas the substrate fatty acid is bound at the catalytic center of another monomer within the ALOX15 dimer, indicated that chemical modification of the core pharmacophore alters the enzyme-inhibitor interactions, inducing a reduced inhibitory potency. In our dimeric ALOX15 model, the structural differences induced by inhibitor binding are translated to the hydrophobic dimerization cluster and affect the structures of enzyme-substrate complexes. These data are of particular importance since substrate-specific inhibition may contribute to elucidation of the putative roles of ALOX15 metabolites derived from different polyunsaturated fatty acids in mammalian pathophysiology.


Asunto(s)
Ácido Linoleico , Farmacóforo , Animales , Conejos , Ácido Linoleico/metabolismo , Mamíferos/metabolismo , Ácidos Linoleicos/metabolismo , Araquidonato 15-Lipooxigenasa/química , Imidazoles/farmacología , Imidazoles/metabolismo
15.
Mol Divers ; 26(3): 1567-1580, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34338914

RESUMEN

SHP2 is a protein tyrosine phosphatase (PTP) that can regulate the tyrosine phosphorylation level. Overexpression of SHP2 will promote the development of cancer diseases, so SHP2 has become one of the popular targets for the treatment of cancer. Studies have reported that both SHP099 and SHP844 are inhibitors of SHP2 and bind to different allosteric sites 1 and 2, respectively. Studies have shown that combining SHP099 with SHP844 will enhance pharmacological pathway inhibition in cells. This study uses molecular dynamic simulations to explore the dual allosteric targeted inhibition mechanism. The result shows that the residues THR108-TRP112 (allosteric site 1) move to LEU236-GLN245 (αB-αC link loop in PTP domain) , the residues of GLN79-GLN87 (allosteric site 2) get close to LEU262-GLN269 (αA-αB link loop in PTP domain) and HIS458-ARG465 (P-loop) come near to ARG501-THR507 (Q-loop) in SHP2-SHP099-SHP844 system, which makes the "inactive conformation" more stable and prevents the substrate from entering the catalytic site. Meanwhile, residue GLU110 (allosteric site 1), ARG265 (allosteric site 2), and ARG501 (Q-loop) are speculated to be the key residues that causing the SHP2 protein in auto-inhibition conformation. It is hoped that this study will provide clues for the development of the dual allosteric targeted inhibition of SHP2.


Asunto(s)
Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Regulación Alostérica , Sitio Alostérico , Humanos , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
16.
Mol Divers ; 26(2): 903-921, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33686514

RESUMEN

The CHK1 kinase plays a pivotal role in the DNA damage response pathway. Hence, inhibition of CHK1 appeared as a promising strategy to overcome the resistance problem of chemotherapeutic agents resulting from the overexpression of CHK1 that enables cancerous cells to repair their chemotherapy-induced DNA damage. In this study, different computational drug design techniques were employed to identify new CHK1 inhibitors targeting its allosteric pocket. A 1 µs MD simulation of the apo form of the enzyme was run to study its native dynamics. The resulting trajectory was analyzed to select a frame where the ATP binding pocket is most occluded while its allosteric counterpart is most exposed to be used in the design of potential allosteric inhibitors that could trap the enzyme in such nearly inactive state. Besides the selected frame, another three crystal structures of CHK1 complexed with allosteric inhibitors were utilized to generate structure-based pharmacophore models. Seven pharmacophores were generated and utilized in virtual screening of different databases. The retrieved hits were filtered and then docked into the allosteric pocket. Finally, the binding energies of the top-ranked docked hits were calculated. Twenty compounds were selected as candidates for biological evaluation against CHK1 enzyme. The biological screening results showed moderate activities where the percentage of CHK1 inhibition ranged from zero to 28.26%. Four of the tested compounds showed percentage of CHK1 inhibition greater than 20%, of which, two compounds were identified as allosteric hits that upon further optimization could be converted into lead-like compounds.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Diseño de Fármacos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
17.
Cell Mol Life Sci ; 79(1): 27, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34971423

RESUMEN

The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy. Here, oridonin was identified from a natural product library as a new PHGDH inhibitor. The crystal structure of PHGDH in complex with oridonin revealed a new allosteric site. The binding of oridonin to this site reduced the activity of the enzyme by relocating R54, a residue involved in substrate binding. Mutagenesis studies showed that PHGDH activity was very sensitive to cysteine mutations, especially those in the substrate binding domain. Conjugation of oridonin and other reported covalent PHGDH inhibitors to these sites will therefore inhibit PHGDH. In addition to being inhibited enzymatically, PHGDH can also be inhibited by protein aggregation and proteasome-mediated degradation. Several tested PHGDH cancer mutants showed altered enzymatic activity, which can be explained by protein structure and stability. Overall, the above studies present new biophysical and biochemical insights into PHGDH and may facilitate the future design of PHGDH inhibitors.


Asunto(s)
Fenómenos Biofísicos , Inhibidores Enzimáticos/farmacología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Productos Biológicos/química , Productos Biológicos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/farmacología , Inhibidores Enzimáticos/química , Ácidos Glicéricos/metabolismo , Humanos , Mutación/genética , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Proteolisis/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
18.
Adv Exp Med Biol ; 1371: 79-108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34351572

RESUMEN

HIV protease plays a critical role in the life cycle of the virus through the generation of mature and infectious virions. Detailed knowledge of the structure of the enzyme and its substrate has led to the development of protease inhibitors. However, the development of resistance to all currently available protease inhibitors has contributed greatly to the decreased success of antiretroviral therapy. When therapy failure occurs, multiple mutations are found within the protease sequence starting with primary mutations, which directly impact inhibitor binding, which can also negatively impact viral fitness and replicative capacity by decreasing the binding affinity of the natural substrates to the protease. As such, secondary mutations which are located outside of the active site region accumulate to compensate for the recurrently deleterious effects of primary mutations. However, the resistance mechanism of these secondary mutations is not well understood, but what is known is that these secondary mutations contribute to resistance in one of two ways, either through increasing the energetic penalty associated with bringing the protease into the closed conformation, or, through decreasing the stability of the protein/drug complex in a manner that increases the dissociation rate of the drug, leading to diminished inhibition. As a result, the elasticity of the enzyme-substrate complex has been implicated in the successful recognition and catalysis of the substrates which may be inferred to suggest that the elasticity of the enzyme/drug complex plays a role in resistance. A realistic representation of the dynamic nature of the protease may provide a more powerful tool in structure-based drug design algorithms.


Asunto(s)
Infecciones por VIH , Inhibidores de la Proteasa del VIH , Farmacorresistencia Viral/genética , Elasticidad , Infecciones por VIH/tratamiento farmacológico , Proteasa del VIH/química , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Inhibidores de la Proteasa del VIH/uso terapéutico , Humanos , Mutación
19.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430407

RESUMEN

Flavivirus comprises globally emerging and re-emerging pathogens such as Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV), among others. Although some vaccines are available, there is an unmet medical need as no effective antiviral treatment has been approved for flaviviral infections. The development of host-directed antivirals (HDAs) targeting host factors that are essential for viral replication cycle offers the opportunity for the development of broad-spectrum antivirals. In the case of flaviviruses, recent studies have revealed that neutral sphingomyelinase 2, (nSMase2), involved in lipid metabolism, plays a key role in WNV and ZIKV infection. As a proof of concept, we have determined the antiviral activity of the non-competitive nSMase2 inhibitor DPTIP against WNV and ZIKV virus. DPTIP showed potent antiviral activity with EC50 values of 0.26 µM and 1.56 µM for WNV and ZIKV, respectively. In order to unravel the allosteric binding site of DPTIP in nSMase2 and the details of the interaction, computational studies have been carried out. These studies have revealed that DPTIP could block the DK switch in nSMase2. Moreover, the analysis of the residues contributing to the binding identified His463 as a crucial residue. Interestingly, the inhibitory activity of DPTIP on the H463A mutant protein supported our hypothesis. Thus, an allosteric cavity in nSMase2 has been identified that can be exploited for the development of new inhibitors with anti-flaviviral activity.


Asunto(s)
Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Humanos , Esfingomielina Fosfodiesterasa , Virus del Nilo Occidental/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico , Sitio Alostérico
20.
Ann Hematol ; 100(8): 2023-2029, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34110462

RESUMEN

Resistance remains the major clinical challenge for the therapy of Philadelphia chromosome-positive (Ph+) leukemia. With the exception of ponatinib, all approved tyrosine kinase inhibitors (TKIs) are unable to inhibit the common "gatekeeper" mutation T315I. Here we investigated the therapeutic potential of crizotinib, a TKI approved for targeting ALK and ROS1 in non-small cell lung cancer patients, which inhibited also the ABL1 kinase in cell-free systems, for the treatment of advanced and therapy-resistant Ph+ leukemia. By inhibiting the BCR-ABL1 kinase, crizotinib efficiently suppressed growth of Ph+ cells without affecting growth of Ph- cells. It was also active in Ph+ patient-derived long-term cultures (PD-LTCs) independently of the responsiveness/resistance to other TKIs. The efficacy of crizotinib was confirmed in vivo in syngeneic mouse models of BCR-ABL1- or BCR-ABL1T315I-driven chronic myeloid leukemia-like disease and in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). Although crizotinib binds to the ATP-binding site, it also allosterically affected the myristol binding pocket, the binding site of GNF2 and asciminib (former ABL001). Therefore, crizotinib has a seemingly unique double mechanism of action, on the ATP-binding site and on the myristoylation binding pocket. These findings strongly suggest the clinical evaluation of crizotinib for the treatment of advanced and therapy-resistant Ph+ leukemia.


Asunto(s)
Antineoplásicos/farmacología , Crizotinib/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Células Jurkat , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Mutación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA