Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(23): 4537-4547.e7, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327975

RESUMEN

Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.


Asunto(s)
Malato Deshidrogenasa , NAD , NAD/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Oxidación-Reducción , Ciclo del Ácido Cítrico/fisiología , Respiración
2.
Mol Cell ; 71(5): 718-732.e9, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193097

RESUMEN

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3ß-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.


Asunto(s)
Gluconeogénesis/fisiología , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Acetilación , Animales , Dominio Catalítico/fisiología , Línea Celular , Línea Celular Tumoral , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Procesamiento Proteico-Postraduccional/fisiología , Sirtuina 1/metabolismo , Ubiquitinación/fisiología
3.
Plant Cell Environ ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219416

RESUMEN

Nitrogen (N) nutrition impacts on primary carbon metabolism and can lead to changes in δ13C of respired CO2. However, uncertainty remains as to whether (1) the effect of N nutrition is observed in all species, (2) N source also impacts on respired CO2 in roots and (3) a metabolic model can be constructed to predict δ13C of respired CO2 under different N sources. Here, we carried out isotopic measurements of respired CO2 and various metabolites using two species (spinach, French bean) grown under different NH4 +:NO3 - ratios. Both species showed a similar pattern, with a progressive 13C-depletion in leaf-respired CO2 as the ammonium proportion increased, while δ13C in root-respired CO2 showed little change. Supervised multivariate analysis showed that δ13C of respired CO2 was mostly determined by organic acid (malate, citrate) metabolism, in both leaves and roots. We then took advantage of nonstationary, two-pool modelling that explained 73% of variance in δ13C in respired CO2. It demonstrates the critical role of the balance between the utilisation of respiratory intermediates and the remobilisation of stored organic acids, regardless of anaplerotic bicarbonate fixation by phosphoenolpyruvate carboxylase and the organ considered.

4.
Cardiovasc Diabetol ; 23(1): 199, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867314

RESUMEN

BACKGROUND: Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans. METHODS: Metformin-specific metabolic changes were initially identified by comparing metformin-treated diabetic mice (MET) with vehicle-treated db/db mice (VG). These findings were then assessed in two human cohorts (KORA and QBB) and a longitudinal KORA study of metformin-naïve patients with Type 2 Diabetes (T2D). We also compared MET with db/db mice on combination therapy (SGLT2i + MET). Metabolic profiling analyzed 716 metabolites from plasma, liver, and kidney tissues post-treatment, using linear regression and Bonferroni correction for statistical analysis, complemented by pathway analyses to explore the pathophysiological implications. RESULTS: Metformin monotherapy significantly upregulated TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate (α-KG) in plasma, and anaplerotic substrates including hepatic glutamate and renal 2-hydroxyglutarate (2-HG) in diabetic mice. Downregulated hepatic taurine was also observed. The addition of SGLT2i, however, reversed these effects, such as downregulating circulating malate and α-KG, and hepatic glutamate and renal 2-HG, but upregulated hepatic taurine. In human T2D patients on metformin therapy, significant systemic alterations in metabolites were observed, including increased malate but decreased citrulline. The bidirectional modulation of TCA cycle intermediates in mice influenced key anaplerotic pathways linked to glutaminolysis, tumorigenesis, immune regulation, and antioxidative responses. CONCLUSION: This study elucidates the specific metabolic consequences of metformin and SGLT2i on the TCA cycle, reflecting potential impacts on the immune system. Metformin shows promise for its anti-inflammatory properties, while the addition of SGLT2i may provide liver protection in conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). These observations underscore the importance of personalized treatment strategies.


Asunto(s)
Ciclo del Ácido Cítrico , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Riñón , Hígado , Metformina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Metformina/farmacología , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Humanos , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Femenino , Quimioterapia Combinada , Ratones Endogámicos C57BL , Metabolómica , Biomarcadores/sangre , Persona de Mediana Edad , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Estudios Longitudinales , Ratones , Anciano , Resultado del Tratamiento
5.
Epilepsia ; 65(8): 2213-2226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767952

RESUMEN

In glucose transporter 1 deficiency syndrome (Glut1DS), glucose transport into brain is reduced due to impaired Glut1 function in endothelial cells at the blood-brain barrier. This can lead to shortages of glucose in brain and is thought to contribute to seizures. Ketogenic diets are the first-line treatment and, among many beneficial effects, provide auxiliary fuel in the form of ketone bodies that are largely metabolized by neurons. However, Glut1 is also the main glucose transporter in astrocytes. Here, we review data indicating that glucose shortage may also impact astrocytes in addition to neurons and discuss the expected negative biochemical consequences of compromised astrocytic glucose transport for neurons. Based on these effects, auxiliary fuels are needed for both cell types and adding medium chain triglycerides (MCTs) to ketogenic diets is a biochemically superior treatment for Glut1DS compared to classical ketogenic diets. MCTs provide medium chain fatty acids (MCFAs), which are largely metabolized by astrocytes and not neurons. MCFAs supply energy and contribute carbons for glutamine and γ-aminobutyric acid synthesis, and decanoic acid can also block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. MCTs do not compete with metabolism of ketone bodies mostly occurring in neurons. Triheptanoin, an anaplerotic but also gluconeogenic uneven MCT, may be another potential addition to ketogenic diets, although maintenance of "ketosis" can be difficult. Gene therapy has also targeted both endothelial cells and astrocytes. Other approaches to increase fuel delivery to the brain currently investigated include exchange of Glut1DS erythrocytes with healthy cells, infusion of lactate, and pharmacological improvement of glucose transport. In conclusion, although it remains difficult to assess impaired astrocytic energy metabolism in vivo, astrocytic energy needs are most likely not met by ketogenic diets in Glut1DS. Thus, we propose prospective studies including monitoring of blood MCFA levels to find optimal doses for add-on MCT to ketogenic diets and assessing of short- and long-term outcomes.


Asunto(s)
Astrocitos , Errores Innatos del Metabolismo de los Carbohidratos , Dieta Cetogénica , Metabolismo Energético , Transportador de Glucosa de Tipo 1 , Astrocitos/metabolismo , Humanos , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo de los Carbohidratos/dietoterapia , Metabolismo Energético/fisiología , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Glucosa/metabolismo , Animales , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Transporte de Monosacáridos/genética
6.
Genes Dev ; 30(11): 1255-60, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27298334

RESUMEN

Various tumors develop addiction to glutamine to support uncontrolled cell proliferation. Here we identify the nuclear receptor liver receptor homolog 1 (LRH-1) as a key regulator in the process of hepatic tumorigenesis through the coordination of a noncanonical glutamine pathway that is reliant on the mitochondrial and cytosolic transaminases glutamate pyruvate transaminase 2 (GPT2) and glutamate oxaloacetate transaminase 1 (GOT1), which fuel anabolic metabolism. In particular, we show that gain and loss of function of hepatic LRH-1 modulate the expression and activity of mitochondrial glutaminase 2 (GLS2), the first and rate-limiting step of this pathway. Acute and chronic deletion of hepatic LRH-1 blunts the deamination of glutamine and reduces glutamine-dependent anaplerosis. The robust reduction in glutaminolysis and the limiting availability of α-ketoglutarate in turn inhibit mTORC1 signaling to eventually block cell growth and proliferation. Collectively, these studies highlight the importance of LRH-1 in coordinating glutamine-induced metabolism and signaling to promote hepatocellular carcinogenesis.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Glutamina/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatología , Mitocondrias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Carcinogénesis/inducido químicamente , Dietilnitrosamina , Regulación Neoplásica de la Expresión Génica , Glutaminasa/genética , Glutaminasa/metabolismo , Hígado/enzimología , Hígado/metabolismo , Hígado/fisiopatología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/enzimología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396928

RESUMEN

This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and ß-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Síndrome Metabólico , Humanos , Síndrome Metabólico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Dieta , Inflamación/metabolismo , Tejido Adiposo/metabolismo
8.
J Neurochem ; 166(2): 109-137, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36919769

RESUMEN

Since it was first generally accepted that the two amino acids glutamate and GABA act as principal neurotransmitters, several landmark discoveries relating to this function have been uncovered. Synaptic homeostasis of these two transmitters involves several cell types working in close collaboration and is facilitated by specialized cellular processes. Notably, glutamate and GABA are extensively recycled between neurons and astrocytes in a process known as the glutamate/GABA-glutamine cycle, which is essential to maintain synaptic transmission. The glutamate/GABA-glutamine cycle is intimately coupled to cellular energy metabolism and relies on the metabolic function of both neurons and astrocytes. Importantly, astrocytes display unique metabolic features allowing extensive metabolite release, hereby providing metabolic support for neurons. Furthermore, astrocytes undergo complex metabolic adaptations in response to injury and pathology, which may greatly affect the glutamate/GABA-glutamine cycle and synaptic transmission during disease. In this Milestone Review we outline major discoveries in relation to synaptic balancing of glutamate and GABA signaling, including cellular uptake, metabolism, and recycling. We provide a special focus on how astrocyte function and metabolism contribute to sustain neuronal transmission through metabolite transfer. Recent advances on cellular glutamate and GABA homeostasis are reviewed in the context of brain pathology, including glutamate toxicity and neurodegeneration. Finally, we consider how pathological astrocyte metabolism may serve as a potential target of metabolic intervention. Integrating the multitude of fine-tuned cellular processes supporting neurotransmitter recycling, will aid the next generation of major discoveries on brain glutamate and GABA homeostasis.


Asunto(s)
Astrocitos , Ácido Glutámico , Ácido Glutámico/metabolismo , Astrocitos/metabolismo , Glutamina/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
9.
Mol Genet Metab ; 140(3): 107689, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37660571

RESUMEN

Triheptanoin (triheptanoylglycerol) has shown value as anaplerotic therapy for patients with long chain fatty acid oxidation disorders but is contraindicated in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. In search for anaplerotic therapy for patients with MCAD deficiency, fibroblasts from three patients homozygous for the most common mutation, ACADMG985A/G985A, were treated with fatty acids hypothesized not to require MCAD for their metabolism, including heptanoic (C7; the active component of triheptanoin), 2,6-dimethylheptanoic (dMC7), 6-amino-2,4-dimethylheptanoic (AdMC7), or 4,8-dimethylnonanoic (dMC9) acids. Their effectiveness as anaplerotic fatty acids was assessed in live cells by monitoring changes in cellular oxygen consumption rate (OCR) and mitochondrial protein lysine succinylation, which reflects cellular succinyl-CoA levels, using immunofluorescence (IF) staining. Krebs cycle intermediates were also quantitated in these cells using targeted metabolomics. The four fatty acids induced positive changes in OCR parameters, consistent with their oxidative catalysis and utilization. Increases in cellular IF staining of succinylated lysines were observed, indicating that the fatty acids were effective sources of succinyl-CoA in the absence of media glucose, pyruvate, and lipids. The ability of MCAD deficient cells to metabolize C7 was confirmed by the ability of extracts to enzymatically utilize C7-CoA as substrate but not C8-CoA. To evaluate C7 therapeutic potential in vivo, Acadm-/- mice were treated with triheptanoin for seven days. Dose dependent increase in plasma levels of heptanoyl-, valeryl-, and propionylcarnitine indicated efficient metabolism of the medication. The pattern of the acylcarnitine profile paralleled resolution of liver pathology including reversing hepatic steatosis, increasing hepatic glycogen content, and increasing hepatocyte protein succinylation, all indicating improved energy homeostasis in the treated mice. These results provide the impetus to evaluate triheptanoin and the medium branched chain fatty acids as potential therapeutic agents for patients with MCAD deficiency.


Asunto(s)
Acil-CoA Deshidrogenasas , Errores Innatos del Metabolismo Lipídico , Humanos , Animales , Ratones , Acil-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Acil-CoA Deshidrogenasas/genética
10.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37318336

RESUMEN

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Asunto(s)
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA